

Università degli Studi di Cagliari

Andrés Otero, Juan Encinas, Francesco Ratto, and Claudio Rubattu

Universidad Politécnica de Madrid

Who We Are?

Andrés Otero joseandres.otero@upm.es

Francesco Ratto francesco.ratto@unica.it

Juan Encinas juan.encinas@upm.es

Claudio Rubattu crubattu@uniss.it

UNIVERSIDAD POLITÉCNICA DE MADRID

Università degli Studi di Cagliari

CPS Summer School 2024 - Creative Lab

Centro de Electrónica Industrial (CEI) at UPM

Centro de Electrónica Industrial

Placed at E.T.S.I. Industriales of the UPM

Located in the City Center of Madrid

Some Numbers

- 46 Full-time researchers
 - 19 Doctors (Faculty, Contracted researchers)
 - 30 Full-time Students (18 PhD, 20 MSc)
- 19 Part time, sponsored students (Bachelor)
- 3 Administration & Technicians

Power Electronics

- Power Converters
- Power Supply Architectures
- Modeling & Simulation
- Smart Grids
- Energy Harvesting

Digital Embedded Systems

- Reconfigurable Embedded Systems
- Open HW and RISC-V
- Internet of Things
- Machine Learning at the Edge
- Post-Quantum Cryptography

POLITÉCNICA

CPS Summer School 2024 – Creative Lab

The Creative Lab at CPS 2024

The Creative Lab is a **highly practical hands-on experience** meant to promote the exchange of ideas between PhD students and young researchers with the spirit of creating a new business culture.

This year's topic:

Smart cyber-physical edge systems

CPS Summer School 2024 – Creative Lab

Δ

What is Reconfigurable Computing?

Reconfigurable Computing is a computer architecture combining some of the **flexibility** of software with the **high performance** of hardware by processing with very flexible high speed computing fabrics like field-programmable gate arrays (FPGAs). The principal difference when compared to using ordinary microprocessors is **the ability to make substantial changes to the data-path** itself in addition to the control flow.

CPS Summer School 2024 - Creative Lab

Performance in RC: Parallel Processing and Custom Computing

Reconfigurable Computing for AI Acceleration

FPGA Architecture

FPGAs are fine grain reconfigurable devices composed by logic elements with a functionality that can be modified as many times as needed.

CPS Summer School 2024 – Creative Lab

FPGA Architecture: Heterogeneous Arrays

- To increase performance and flexibility, some reconfigurable devices have a layout with embedded heterogeneous resources, such as:
 - Custom DSP function blocks
 - Memory blocks to store frequently used data and variables on-chip for quick access, thanks to the proximity to the logic blocks that access it.

Mixed Software / Hardware Systems

- Best-of-both-worlds approach
 - Microprocessor(s) for sequential application 0 execution
 - FPGA logic for massively parallel computation 0
- Different approaches
 - Traditional: System on Programmable Chip 0 (SoPC)
 - Microprocessors embedded in FPGA logic
 - Hard cores: silicon with fixed functionality (PowerPC)
 - Soft cores: implemented using FPGA logic resources (MicroBlaze, Nios II)
 - Current: System on Chip (SoC) + FPGA 0
 - Silicon is split in ASIC-like CGRA and FPGA ٠ parts
 - Microprocessors can operate without enabling the FPGA

CPS Summer School 2024 – Creative Lab

System-on-Programmable Chips (SoPCs)

System-on-Programmable-Chips (SoPCs)

Architectural concept resulting from the integration of 'hard' CPU cores with an FPGA in the same chip

Embedded System Mapped on Zyng

"The PL section is ideal for implementing high-speed logic, arithmetic and data flow subsystems, while the **PS** supports software routines and/or

SEPTEMBER 16-20 2024 - ALGHERO, SARDINIA, ITAL

CPS Summer School 2024 – Creative Lab

operating systems" (from The Zynq Book) POLITÉCNICA

SoC Based Design for Zynq (Vivado & SDK)

Kria[™] KV260 Vision AI Starter Kit

- · Mult-Camera Support: Up to 8 interfaces
- · 3 MIPI sensor interfaces, USB cameras
- · Built-in ISP component
- HDMI, DisplayPort outputs

- 1Gb Ethernet
- USB 3.0 / 2.0

- · Extend to any sensor or interface
- Access Pmod ecosystem

- · Low cost, enabling design exploration
- · Available from Xilinx and distributors

SEPTEMBER 16-20 2024 - ALGHERO, SARDINIA,

CPS Summer School 2024 – Creative Lab

SEPTEMBER 16-20 2024 – ALGHERO, SARDINIA, ITALY

CPS Summer School 2024 – Creative Lab

CPS Summer School 2024 - Creative Lab

Zyng UltraScale+ EG

- Quad-core ARM® Cortex-A53 processors @1.5GHz ο
- 16nm FinFET+ FPGA 0
- Dual-core Cortex-R5 real-time processors 0
- Mali-400 MP2 GPU 0

SEPTEMBER 16-20 2024 - ALGHERO, SARDINIA, ITALY CYBER PHYSICAL MMER SCHOOL SYSTEMS

CPS Summer School 2024 – Creative Lab

di Cagliari

How to reach the board?

Open the terminal: \$ dmesg | grep tty \$ sudo putty /dev/ttyUSBXXXX -serial -sercfg 115200,8,n,1,N \$ ip a

usr:pwd \rightarrow ubuntu:alghero24

via SSH (discover ip first)
\$ ssh ubuntu@<my_magic_ip>

CPS Summer School 2024 - Creative Lab

Creative Lab Components: The PYNQ Framework (I)

PYNQ is an open-source project started by Xilinx, which fuses the productivity of Python with the acceleration provided by programmable logic within the Zynq / Zynq MPSoC.

CPS Summer School 2024 – Creative Lab

Creative Lab Components: The PYNQ Framework (II)

As developers, we leverage the PYNQ framework by connecting to the Jupyter server over a wired ethernet link and developing our application in a browser-based interface.

💭 jupyter	Logout
Files Running Clusters Nextensions	
Select terms to perform actions on them.	Upload New - C
00 • •	Name 🔶 🛛 Last Modified
C common	4 days ago
getting_started	4 days ago
Welcome to Pyrig (bynb)	4 days ago

Now you can access JupiterLab via browser:

• <ip_address>:9090/lab or

The password is: xilinx

Creative Lab Components: The PYNQ Framework (III)

- Community overlays what overlays are available for our PYNQ applications?
 Creating applications using available overlays, e.g. image processing, BNN, etc.
 Creation of our own overlays how do we make a simple overlay from scratch?
- Custom PYNQ images how do we build and deploy PYNQ images for custom boards? PYNQ images can be generated for both Zynq and Zynq MPSoC-based boards.

CPS Summer School 2024 - Creative Lab

Creative Lab Components: Vitis AI

Adaptable & Real-Time AI Inference Acceleration

https://github.com/Xilinx/Vitis-AI

CPS Summer School 2024 - Creative Lab

Creative Lab Components: Vitis AI

Entering here for the creative lab

CYBER PHYSICAL SUMMER SCHOOL SYSTEMS

Creative Lab Components: Vitis Al

SEPTEMBER 16-20 2024 – ALGHERO, SARDINIA, ITALY

CPS Summer School 2024 - Creative Lab

Vitis Al Model Zoo

https://github.com/Xilinx/AI-Model-Zoo/

CPS Summer School 2024 - Creative Lab

Creative Lab Components: DPU & run-time

DPU for the Zynq® UltraScale+™ MPSoC

"Deep learning Processing Unit"

- "Matrix of Processing Engines" (MPE) architecture
 - · Composed of DSPs, LUT, FFs, BRAM, UltraRAM (optional)
- Soft-logic, micro-coded processor for INT8 deep learning inference
 - Graph compiled as micro-code, executed on DPU
 - Operator fusion, INT8 quantization, weights shuffled for optimized performance
- Linux, QNX, and Integrity runtime enablement (QNX / Integrity support as POC, beta)
- Dedicated data movers and AXI stream interfaces for:
 - Instruction fetch
 - Weight and activation load/store
- Dedicated AXI memory-map interface for DPU configuration and status register access
- Global memory pool for buffering of intermediate activations
 - Optimizes and minimizes DDR bandwidth requirements
- Scalable from low to high parallelism (OPs)
 - 1 to 4 DPU cores per target device
 - Size DPU parallelism to fit available logic
 - Configurations for low / high DSP, RAM utilization, UltraRAM

Zynq UltraScale+ MPSoC Device / Platform

https://github.com/Xilinx/DPU-PYNQ

CPS Summer School 2024 - Creative Lab

Creative Lab Components: DPU & run-time

https://github.com/Xilinx/DPU-PYNQ

CPS Summer School 2024 - Creative Lab

Creative Lab Scheduling 2024

	Monday	Tuesday	Wednesday	Thursday	Friday
	Introduction	Modelling and Design	Architectures	Security on CPS	Creative Lab Day
8:15-8:50	Registration and				
8:50-9:00	Opening	Opening	Opening	Opening	OpeningAula
9:00-10:30	Alberto Sangiovanni-Vincentelli (UC BERKELEY)	Danilo Pau (STM)	Daniel Newbrook (SOTON - ARM)	Elif Bilge Kavun (UNI PASSAU)	Creative Lab @ Work
10:30-11:00	Break	Break	Break	Break	Break
11:00-12:30	Paolo Azzoni (INSIDE)	STMicroelectronics Demo and Tutorial	MYRTUS project tutorial	SECURED project tutorial	Creative Lab @ Work
12:30-13:30	Lunch	Lunch	Lunch	Lunch	Lunch
13:30-14:00	Creative Lab Presentation	Creative Lab @ work		Creative Lab @ work	Creative Lab Pitch & Demo
14:00-15:30	CPS - WORKSHOP Aula Bacasanda and Posters presentation (EPFL)				las
15:30-16:20			Creative Lab ② v.ork (15:00 - Till you'd like)		
			Aula Badas		

SEPTEMBER 16-20 2024 - ALGHERO, SARDINIA, ITALY

CPS Summer School 2024 - Creative Lab

A Demo

 AMD Demo based on USB Camera acquisition

https://xilinx.github.io/kria-appsdocs/kv260/2022.1/build/html/index.html

https://github.com/Xilinx/PYNQ/blob/master/boa rds/Pynq-Z1/base/notebooks/video/opencv_filters_webcam. ipynb

CPS Summer School 2024 - Creative Lab

Red Team

- Antony Bartlett
- Luca Martis
- Emanuele De Luca
- Zeinab Sadat Rabani

Green Team

- Daniele Nicoletti
- Philip Wiese
- o <mark>Luka Macan</mark>
- Leonardo Picchiami

Blue Team

- Benigno Ansanelli
- o Jiahong Bi
- Georgios Tasopoulos
- Afroz Mokarim
- o Alessandro Monni

Yellow Team

- Francesco Biondani
- Marina Cordovilla
- Marco Brohet
- o Mattia Tibaldi
- Marco Fois

SEPTEMBER 16-20 2024 - ALGHERO, SARDINIA, ITALY

CPS Summer School 2024 - Creative Lab

Purple Team

- Mario Libro
- Angelos Dimoglis
- Tom Slooff
- Federico Manca

Orange Team

- Massimo Micolitti
- Michalis Piponidis
- Alberto Galassi
- o Gianluigi Ferrari

"Good" Creative Lab Projects

... decide "small" realistic demos.

Think big, address real problems, potential business ideas, but...

Useful Links

Setting Up the Board and Application Deployment¶

https://xilinx.github.io/kria-appsdocs/kv260/2022.1/build/html/docs/smartcamera/docs/app deployment.html

Ready to use notebooks:

https://github.com/Xilinx/Kria-PYNQ/tree/main/kv260/base/notebooks/microblaze https://github.com/Xilinx/Kria-PYNQ/tree/main/kv260/base/notebooks/video https://github.com/Xilinx/DPU-PYNQ/tree/master/pynq_dpu/notebooks https://github.com/Xilinx/PYNQ_Composable_Pipeline

Model Zoo for PYNQ-DPU based models (2.5 Vitis AI): https://github.com/Xilinx/Vitis-AI/tree/2.5/model_zoo

Vitis AI Library https://docs.xilinx.com/r/2.5-English/ug1354-xilinx-ai-sdk/Introduction

Vitis AI User Guide v2.5 https://docs.xilinx.com/r/2.5-English/ug1414-vitis-ai/Vitis-AI-Overview

CPS Summer School 2024 - Creative Lab

