
Olympus: DesignMethods for Simplifying the
Creation ofDomain-SpecificMemoryArchitectures

Stephanie Soldavini, Advisor: Christian Pilato
stephanie.soldavini@polimi.it, christian.pilato@polimi.it

Problem
Specialized hardware accelerators can have high performance and energy effi-
ciency, but their design are very complex and time consuming, especially for
big data and machine learning applications [2] and on platforms with high-
bandwidth memory (HBM).

This complexity means the designer not only has to optimize the accelerator com-
putation logic, but also has to carefully craft efficient memory architectures,
which is not the case in traditional software design [5].

Proposed Flow
We aim to create a multi-level compilation flow [6] that specializes a domain-
specific memory template to match data, application, and technology require-
ments in order to simplify the hardware accelerator development process.

External Memory

Kernel

Logic to Resolve Addr
and Reduce Delay

Cache

DMA

Prefetcher

Multi-Channel
Controller

DRAM

HBM

Remote

PLM PLM

Multi port
(based on access

patterns)

Data Org Layout Communication
Local

Partitioning
Kernel Gen

System-Level
Description

HDL

Intelligent Memory Logic
(Latency Insensitive)

Direct Access Memory
(Fixed Latency)

Olympus

Olympus automatically integrates many features targeted at solving six chal-
lenges of the hardware-software gap [4].

1 Input Languages and Frameworks: How can application designers
exploit hardware acceleration while using high level frameworks?

Vitis HLS C code and HDL are accepted. They can be handcrafted or be
generated by domain-specific language compilers or other HLS tools.

2 CPU-Host Communication Cost: How to minimize Host-FPGA
data transfer time so hardware acceleration is advantageous?

While the host is exchanging data with the Ping (Pong) HBM channels, the
compute units (CUs) can use the Pong (Ping) channels.

3 Read/Write Burst Transactions: How can the data be reorganized
to gain the maximum performance?

The HBM channels are filled with as much data as possible and input and
output data are separated each channel only moves data in a single direction.

4 Full Bandwidth Utilization: How can the many wide channels of
emerging memory technologies be maximally and effectively leveraged?

The memory channels are divided into “lanes” and the kernel is replicated so
each uses one lane. For instance, with 64-bit data, the 256-bit bus is divided
into four lanes and four kernels are instantiated.

5 Data Allocation: Can custom data layouts maximize area efficiency?

Mnemosyne [3] is used to create an efficient private local memory (PLM)
architecture using up to 42% less BRAM [1].

6 Synthesis-Related Issues: How to trade-off between optimizing few
kernels or creating many in parallel?

A single CU performs better than several parallel CUs, due to the frequency
downscaling caused by the routing congestion around the interface to HBM.

Iris
Iris [7] is a method for creating
a data layout for unconventional
data widths which minimizes
the data transfer time between
global memory and the accelerator.

• Inspired by processor scheduling
• Arrays are “preemptible tasks”
• Can be split and interleaved in a

data transfer “schedule”
• Optimizes so array is available to

its compute unit as soon as pos-
sible after it is needed

• Schedules 6.4% more efficient than the naive method, which over millions
of iterations can be significant

• FPGA logic uses up to 33.3% smaller data FIFOs than the naive method

Results

Ba
sel

ine

Do
ubl

e B
uff

erin
g

Bu
s O

pt

Da
tafl

ow
(1

com
p.)

Mem
Sha

rin
g (1

com
p.)

Da
tafl

ow
(7

com
p.)

Fix
ed

Po
int

64

Fix
ed

Po
int

32
0

50

100

150

3
.1
9
8

3
.0
5
6

3
.7
6
1

1
3
.8
7
0

1
3
.6
3
1

4
4
.0
1
7

5
2
.3
9
3

1
0
8
.2
8
6

2
.9
0
3

3
.0
5
5

3
.7
5
9

1
3
.8
4
2

1
3
.6
0
4

4
3
.4
1
0

5
1
.7
6
1

1
0
3
.0
1
8

G
F
L
O
P
S

CU

System

Performance of the Inverse Helmholtz operator with Olympus optimizations
(applied incrementally) [4].

References
[1] F. A. Karl Friebel, S. Soldavini, et al. “From Domain-Specific Languages to Memory-

Optimized Accelerators for Fluid Dynamics”. In: CLUSTER. 2021.
[2] C. Pilato, S. Bohm, et al. “EVEREST: A design environment for extreme-scale big data

analytics on heterogeneous platforms”. In: DATE. 2021.
[3] C. Pilato, P. Mantovani, et al. “System-Level Optimization of Accelerator Local Memory

for Heterogeneous Systems-on-Chip”. In: TCAD 36.3 (2017).
[4] S. Soldavini, K. F. A. Friebel, et al. “Automatic Creation of High-Bandwidth Memory Ar-

chitectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics”.
In: ACM TRETS (Sept. 2022).

[5] S. Soldavini and C. Pilato. “A Survey on Domain-Specific Memory Architectures”. In: JICS
16.2 (Aug. 2021).

[6] S. Soldavini and C. Pilato. Compiler Infrastructure for Specializing Domain-Specific Mem-
ory Templates. 2021.

[7] S. Soldavini, D. Sciuto, et al. “Iris: Automatic Generation of Efficient Data Layouts for High
Bandwidth Utilization”. In: ASPDAC. Accepted. Tokyo, Japan: ACM, 2023.

Acknowledgements
This work is partially funded by the EU Horizon 2020 Programme under grant agreement
No 957269 (EVEREST).


