
CPS Summer School – September 19, 2023

CHRISTIAN PILATO AND STEPHANIE SOLDAVINI

How to use HLS for building customized memory
architectures

About Me
Associate Professor

PhD Student
2008-2011

Research Assistant
2011-2013

Postdoc Research Scientist
2013-2016

Postdoc
Research Assistant

2016-2018
Assistant Prof.

2018-2023

R&D
Internship
6 months

Visiting
Researcher

3 months

Visiting
Researcher

4 months

Visiting
Researcher

9 months

FP6 HARTES
FP7 SYNAPTIC

FP7 FASTER DARPA PERFECT
SRC CFAR

H2020 CERBERO
DARPA CRAFT

R&D Projects

Website: http://pilato.faculty.polimi.it

H2020
EVEREST

2

http://pilato.faculty.polimi.it/

Big data applications with
heterogeneous data sources

FPGA-based architectures to
accelerate selected kernels

● App designers are not FPGA experts
● Hardware accelerators require many

optimizations
● Target nodes can have different

characteristics

Improve applications’ results

Increase quality of accelerators

Increase designers’ productivity
Compilation Runtime

How to optimize big data applications on FPGA-based architectures?

Unified hardware generation flow
(high-level synthesis)

Generation of variants

Dynamic adaptation to variants

Virtualization of resources

Multi-node support

The EVEREST Project

H2020 Project – 10 partners, 6 countries

Project Coordinator: Christoph Hagleitner, IBM Research Europe

Scientific Coordinator:

Budget: ~5M€

Start date: October 1, 2020 (36+6 months)

🙋

3

EVEREST Approach

Big data applications with
heterogeneous data sources

FPGA-based architectures to
accelerate selected kernels

SDK

What are the relevant requirements for data, languages and applications?

How to design data-driven policies for computation, communication, and storage?

How to create FPGA accelerators and associated binaries?

How to manage the system at runtime?

How to evaluate the results?

How to disseminate and exploit the results?

CPU-based infrastructure

Two FPGA-based clusters
+

Open-source framework to
support the optimization of

selected workflow tasks

Three use cases

4

EVEREST Partners
IBM Reseach Lab, Zurich (Switzerland)
Project administration, prototype of the target system
PI: Christoph Hagleitner

Politecnico di Milano (Italy)
Scientific coordination, high-level synthesis, flexible memory
managers, autotuning
PI: Christian Pilato

Università della Svizzera italiana (Switzerland)
Data security requirements and protection techniques
PI: Francesco Regazzoni

TU Dresden (Germany)
Domain-specific extensions, code optimizations and variants
PI: Jeronimo Castrillon

Centro Internazionale di Monitoraggio Ambientale (Italy)
Weather prediction models
PI: Antonio Parodi

IT4Innovations (Czech Republic)
Exploitation leaders, large HPC infrastructure, workflow
libraries
PI: Katerina Slaninova

Virtual Open Systems (France)
Virtualization techniques, runtime extensions to manage
heterogeneous resources
PI: Michele Paolino

Duferco Energia (Italy)
Application for prediction of renewable energies
PI: Lorenzo Pittaluga

Numtech (France)
Application for monitoring the air quality of industrial sites
PI: Fabien Brocheton

Sygic A/S (Slovakia)
Application for intelligent transportation in smart cities
PI: Radim Cmar

5

Traffic modeling for intelligent transportation

EVEREST Use Cases

6

Weather prediction modelling
(WRF)

Renewable energy production prediction

Air-quality monitoring of industrial sites

Accelerated computationally-intensive kernels Machine-learning kernels+

★ Improve quality of the predictions

★ Accelerate kernels to execute more tests
★ Improve the response time of predictions

★ Improve the overall performance of traffic simulation

The Case of Computational Fluid Dynamics

t4 = S#t3.[0 4]

v = S#t4.[0 4]

t3 = S#t .[0 4]

r = D*tr

t1 = S#t0.[1 4]

t = S#t1.[1 4]

t0 = S#u .[1 4]

S Du

v

t0

r

t1

t

t3

t4

t = S#S#S#u.[…]

v = S#S#S#r.[…]

t

S Du

v

Numerical simulation application that requires to solve
partial differential equations
★Final result obtained by “small” contributions on

independent data
★Inverse Helmholtz operator (three tensor operators)

repeated millions of times – parameters p

p2 + 2 ! p3 (double) elements as input
21.74 KB (p = 11)

p3 (double) elements as output
10.40 KB (p = 11)

6 ! p3 (double) elements as temporary
62.39 KB (p = 11)

Total = 94.53 KB per kernel

7

EVEREST Target System

● Disaggregated FPGAs directly attached to the
network (64 FPGA instances)

● Low latency and high bandwidth system
● Separation between Shell and Role modules
● cFDK framework for system generation

● Cluster of PCIe-attached FPGAs (Alveo) with
HBM architecture (up to 460 GB/s per board)

● Xilinx Vitis framework for HLS and system
integration

● Support for the integration of custom HDL

● CPU-based infrastructure to execute end-to-end workflows, manage storage, and data transfers
● Extended to support the offloading of tasks to FPGA servers

cloudFPGA FPGA-Accelerated HPC Cluster

CPU Reference System

Exploit spatial parallelism

High memory bandwidth

Different nodes to better match applications

Seamless support for multiple nodes

Limited FPGA resources (esp. memories)

Data-intensive (memory-bound) applications

8

EVEREST System Development Kit (SDK)

(and more...)

Processing State

0DFKLQH�/HDUQLQJ�)URQWHQG¬

7KH�2SHQ�&,0�&RPSLOHU¬

&,0�5XQWLPH�/LEUDU\

+DUGZDUH
&38

Collection of interoperable and open-source tools to create hardware/software
systems that can adapt to the target system, the application workflow, and the
data characteristics

Different input flows
starting from different input languages

Support for multiple target boards

📌 Compilation framework based on MLIR to unify the input languages
📌 High-level synthesis and hardware generation flow to automatically create optimized architectures
📌 Creation of hardware and software variants to match architecture features
📌 Use of state-of-the-art frameworks and commercial toolchains for FPGA synthesis

9

Additional Data-Related Issues

Application-specific optimizations

Limited BRAM resources
★The number of parallel kernels can be limited

System-level optimization
★Creation of batch of elements to be executed in series by each kernel

★For example, in Helmholtz, one of the tensors is constant over all
elements and another is diagonal

how to specify them at the language
level and exploit them during design?

how to optimize local storage?

how to size the batches and hide
communication latency?

10

Hardware HPC (Memory) Architectures
What do we mean with memory architecture?

Additional issues:
• BRAM resources are limited

• Helmholtz operator requires >94 KB of local data
• If local storage is not optimized, the number of parallel kernels can be limited

• Application-specific details can be used to optimize the data transfers
• In Helmholtz, one of the tensors is constant over all elements – how to match

these details with platform characteristics?
• Better to transfer data for a “batch” of elements and then execute them in series –

how many? again, limited storage

Every hardware module that is responsible to
provide data to the accelerator kernels

11

MLIR-based Compilation Flow

Annotated C code
/ LLVM IR / MLIR

HLS
(Vitis/Bambu)

Arch. Info

Mem. Gen.
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data
requirementsMem. Info

Security/data
requirements

Memory
access pa4ernsIP requirements

Synthesis Tools

ML Framework

Possibility to target different
architectures

Memory architecture is
decoupled from kernel HLS

ch1

ch3

ch2

Use of high-level synthesis for the
automatic generation of both acceleration
kernels and system architectures

12

Convergence of multiple input flows

VitisOlympus

CFDlang

CFDlang
Compiler

C Kernel

Array
Info

Sharing
Info

Explore

Minimal C++
CU Wrapper

HLS Resource &
Latency

Estimates

Optimize

Optimized
C++ CU

Host C++

System CFG

Mnemosyne v++

g++

Binary

0101
001101
010011

Bitstream

0101
001101
010011

Memory
Architecture

HDL

Port Info

Alveo FPGA

PCIe

Host CPU

Design Space Exploration

Platform
Specification

DSL-to-C C-to-System System-to-Bitstream Execution

From DSL to Bitstream – Focus on Memory

kernel_body

PLM

void kernel_body(double S[11][11], double D[11][11][11], double u[11][11][11],
double v[11][11][11],
double t[11][11][11], double r[11][11][11], double t1[11][11][11],
double t3[11][11][11], double t0[11][11][11], double t2[11][11][11])

kernel_body

ctrl S D u v

t r t1 t3 t0 t2CE0 A0 Q0

kernel_body

PLM
CE1 A1 D1 WE1......

Read port Write port

S

D

r

u

v t3

t1 t0

t2

t

PLM optimization
(local storage)

Optimization of
data movements

13

Memory architecture generation
is decoupled from kernel HLS

Mnemosyne – Reuse What is not Used
Generally, we use one PLM unit (possibly composed of many banks) for
each data structure (array)

“Two data structures are compatible if they can be
allocated to the same PLM unit (memory IPs)”

A common case: accelerator kernels never executed at the same time
• Possible only at system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse the same memory IPs
for several data structures

PLM Customization for Heterogeneous SoCs

High-Level Synthesis (HLS) to create the accelerator logic
• Definition of memory-related parameters

(e.g., number of process interfaces)

Generation of specialized PLMs
• Technology-related optimizations
• Possibility of system-level optimizations

across accelerators Accelerator Tile

DMA
Ctrl

Load

Compute 1

Store

Compute nke
rn
el
()

Private Local Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
2
3

45
6

…

1 2

in

out

Accelerator Logic

Memory LibraryPLM
Generation

High-Level
Synthesis

Data
Structures

High-Level
Description

(C/C++/SystemC)

Memory Compatibility Graph (MCG)
Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data

footprint (after data allocation)
• Each edge represents compatibility between the two data structures
• Can be automatically extracted from the MLIR-based compiler flow

• Variant exploration to achieve the "best solutions"

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the
data structures are compatible and
can use the same memory IPs

b) Memory-interface compatibility:
the ports are never accessed at the
same time and the data structures
can stay in the same memory IP

Clique Definition
“A clique is a subset of the vertices of the memory

compatibility graph such that every two vertices are
connected by an edge”

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

ab

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

We need two distinct configurations!
 {A0,B0} and {A1} or {A1,B0} and {A0}?

a

A clique represents a set of
data structures that can

share the same memory IPs

PLM Controller Generation
A lightweight PLM controller is created for each compatibility set
(clique) based on the bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom logic with negligible overhead, especially when
the number of banks and their size is a power of two

0x0 0x1

0x0

0x1

0x0

0x1

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

0x00
0x01
0x02
0x03

…

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

C
E
	

A
	

Q
	

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

…	

1 0010 1

100101

Olympus – Automated System-Level Integration
Complete hardware architecture generation flow from high-level
specification

Platform-specific description
• HBM-based Xilinx Alveo
• IBM CloudFPGA
• …

Host code generation
• Based on platform libraries

for the specific target

Possibility to use alternative HLS
tools/HDL generators

19

Olympus Optimizations

Double buffering
★ To hide latency of host-FPGA data transfers

Bus optimization and data interleaving
★ To maximize bandwidth (e.g., 256-bit AXI channels)

Dataflow execution model
★ To enable kernel pipelining

automatic batch sizing

algorithms for efficient
data layout on the bus

automatic (pre-HLS)
code transformations

S. Soldavini, D. Sciuto, C. Pilato: Iris: Automatic Generation of Efficient Data
Layouts for High Bandwidth Utilization. ASP-DAC (2023)

20

Olympus – System Generation Flow

Inputs
★ Algorithm parallelism
★ Characteristics of the target platform(s)
★ Interfaces of the modules (HLS tools)

Outputs
★ Synthesizable C++ code
★ Host library implementation
★ System configuration file

“Intelligent” policies to coordinate and/or protect data transfers

Parallel
computing units

21

Results on HBM FPGA (Alveo u280)

22

S. Soldavini, K. F. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillón, C. Pilato: Automatic Creation of High-Bandwidth Memory
Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics. ACM TRETS (2022)

Best performance: 103 GOPS
(118x faster than "starting point")

Results are 6x better than Intel CPU
★ Intel is an optimized, vectorized implementation

Configuring PLM and data transfers
based on custom data formats

Conclusions

Accelerators are becoming key components in modern architectures

The increasing design complexity requires embracing high-level
synthesis to increase productivity

★ Data management optimizations are becoming the key for the creation of efficient FPGA
architectures (… more than pure kernel optimizations)

★ Novel HBM architectures offer high bandwidth (that’s why they are called high-bandwidth
memory architectures… J) but their design is complex

★ Use of HLS to generate both accelerator kernel and the associated memory architecture
★ Possibility to target different platforms

Mnemosyne

Olympus

23

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269

Thanks!

