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A Digital What? 

wikipedia.org



Does this sound familiar?

wikipedia.org

www.cpsschool.eu



Does this sound familiar? 

CPSs and DTs share the same essential concepts
and look at the same reality

• Intensive cyber-physical connection, real-time 
interaction, research for «smart» reaction to 
evolving conditions

• So why two definitions? 
Almost simultaneous: CPS in 2006, DT in 2003

Shift in perspective! 



Cyber Physical System

• Sensors and actuators as main modules

• Control commands generated based on 
predefined rules or models, that activate
actuators to adapt the system to changes

• May control more than one
process/object simultaneously

Digital Twin

• Goal is to provide a physical and 
functional description of an object

• Virtual models and physical
process/object co-evolve throughout the 
whole lifetime

• Sensors as data generators

• Actuators to react to any predicted
malfunction or decision derived by the 
cyber part

CPSs vs. DTs



Cyber Physical System

• Science perspective: focus on control 
problems and feedback loop

Digital Twin

• Engineering and manufacturing 
perspective

• Exploits data analysis of collected data 
(sensed, historical, etc.) to enable
accurate predictions, rational decisions, 
informed production

• Data and data-centered models as core 
elements

CPSs vs. DTs



So what is a digital twin? 



So what is a Digital Twin? 

https://youtu.be/2dCz3oL2rTw

www.youtube.com/watch?v=2dCz3oL2rTw



So what is a Digital Twin? 

Virtual representation that interacts with the physical object
throughout its lifecycle to provide intelligence for prediction, 
evaluation, optimization, etc. 

5 main ingredients: 

› Physical space plus virtual space

› Their connection for virtual-physical interaction

› Data from virtual and physical domains used for comprehensive 
information capture

› Functions for unified management and on-demand usage: 
› Detection, judgment, prediction



THE CONTEXT

INDUSTRY 4.0 AND ITS ENABLING TECHNOLOGIES



Industry 4.0 has been defined as “a 
name for the current trend of 
automation and data exchange in 
manufacturing technologies, including 
cyber-physical systems, the Internet of 
things, cloud computing and cognitive 
computing and creating the smart 
factory”

Industry 4.0



Industry 4.0 and Digital Twins

Different ingredients, i.e., enabling 
technologies
› Even more automation than in the 

3rd industrial revolution

› Bridge the physical and digital world 
through Industrial IoT

› Shift from a central industrial control 
system to one where smart products 
define the production steps

› Closed-loop data models and control 
systems 

› Personalization/customization of 
products



Industry 4.0 and Digital Twins

DIGITAL TWINS

VIRTUAL MODEL AND 

PHYSICAL PLANT INTERACT 

THROUGHOUT THE PLANT 

LIFECYCLE TO PROVIDE 

INTELLIGENCE AND IMPROVE 

THE PRODUCTION PROCESS



Physical and Virtual: 
the Digital Twin

Digital twin as a practical application 
of technologies for seamless 
integration of physical and virtual

› For each physical object there exists a 
virtual mirror model able to analyze, 
evaluate, optimize, predict, etc. 

› The two parts interact with each other 
and remain synchronous in closed loop

› Data from both physical and virtual can 
be fused to generate more 
comprehensive information

https://www2.deloitte.com/cn/en/pages/consumer-industrial-products/articles/industry-4-0-and-the-digital-twin.html



DIGITAL TWINS

DEFINITIONS, PARTS AND ENABLING TECHNOLOGIES



201820172014201220102005

First definition
Given by Michael Grieves, 

University of Michigan
Presentation to industry 

for the formation of a 
Product Lifecycle 

Management (PLM) center

2003

KEY CONCEPT: INFORMATION MIRRORING MODEL
• Real space + virtual space
• Information flow between virtual space and real space
• During all lifespan: creation, manufacture, operation, 

and disposal

M. Grives, Conceptual Ideal for PLM, 2002



2018201720142012201020052003

Definition by NASA
“Integrated, multi-physics, multi-scale, probabilistic simulation 
of a vehicle or system that uses the best physical models, sensor 
updates, fleet history, etc. to mirror the life of its flying twin”

• Concept first applied in the 1970s during the Apollo 13 
program

• Rapidly account for changes to the vehicle while exposed to 
the extreme conditions in space

• NASA found they could no longer base corrective decisions on 
the original model

• The actual module had undergone significant changes 
• The original model needed to be updated to more closely 

mirror the current state of the module!

M. Shafto, M. Conroy, R. Doyle and others, Modeling, Simulation, Information Technology & Processing Roadmap, Technology area, 2010.



2018201720142012201020052003

Digital twin as key technology
For future vehicles by NASA and US Air 

Force for structural health management
Multidisciplinary physics-based 

methodology

Whitepaper of digital twin
Application to more domains, 
including automotive, oil and 
gas, healthcare and medicine

First conference
Exploration of key 

technologies, mechanisms, 
implementation methods
Definition of digital twin-

driven design



2018201720142012201020052003

Digital twin as top trend
Gartner: digital twin as one of 

the top 10 most promising 
technological trends



2018201720142012201020052003

Today: digital twin as 
available technology

Potential technology 
breakthrough, early proof-of-

concept stories
Mainstream adoption in 5 to 

10 years
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2018201720142012201020052003

Technology gap
From 2003 to 2011 technology was 

immature to support practically viable 
digital twins

Rapid growth of research and development
Triggered by technology growth, e.g., cloud 

computing, IoT, big data, sensor technologies, …
Enabling technology is crucial to allow digital twins!



https://www.marketsandmarkets.com/Market-Reports/digital-twin-market-225269522.html https://www.gminsights.com/industry-analysis/digital-twin-market

https://www.businesswire.com/news/home/20201105005766/en/



Parts of a Digital Twin

CONNECTIONS
Enable closed-loop 

interaction between digital 
and physical elements

MODEL
Digital companion is made of a set of models

Reproduce with high fidelity the properties, 
behaviors and rules of the physical object

Operate autonomously in the virtual space
Ability to predict problems on physical side

Validate performance before system 
completion

DATA
Physical plus virtual data 
provides intelligence, e.g., 
digital model built from 
sensor data, decision based 
on simulated data, and 
operations based on 
predefined models

SERVICE
Encapsulate functions of the 
digital twin into services of 
easy and convenient usage
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Modeling the Virtual Entity

Physical entity exists physically and can 
complete missions in space and produce 
outputs

Virtual entity: 
› Made of a set of models to describe the 

physical entity from different perspectives 
(e.g., geometrical dimensions, physical 
properties) 

› No standard modeling flow

› Strictly dependent on application, level of 
detail, expertise of the designer, etc.

› How and what do I want to reproduce the 
physical aspects? 

https://www.youtube.com/watch?v=s4Ztp_d_q54



No generic model 

Different types of models, depending on 
the scope and on the application:

› Unit level: equipment and production line, 
basic closed loop

› System level: emphasis on interconnection 
of components and on collaboration, 
geographically concentrated

› System of Systems level: enterprise-wide 
integration during entire product life-cycle, 
multiple production lines, supply chain

Modeling the Virtual Entity

UNIT LEVEL

SYSTEM-OF-

SYSTEMS LEVEL

PHYSICAL

SYSTEM LEVEL

PHYSICAL

PHYSICAL

VIRTUAL

VIRTUAL

VIRTUAL



Modeling the Virtual Entity

Sound mathematical models of multi-physical 
physical processes 

› Multiphysics simulation, e.g., fluid, structure, aero-
acustic, thermodynamics

› Integrate existing models by adding the closed loop 
with the physical counterpart – no need to invent 
new ones

› Include 3D solid modeling to describe the 
geometric appearance of the physical entity

› Limited to the design phase of man made 
objects/systems

› Prone to numerical instability and too computationally 
demanding

› Underutilized unless their computational efficiency is 
improved

Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena, I. Lazoglu, Virtual process systems for part machining operations, CIRP Annals, Volume 63, Issue 2, 2014, Pages 585-605. 



Modeling the Virtual Entity

Statistical models like Markov chains and Bayesian networks

› System as sequence of possible events in which the probability of each event depends 
only on the state attained in the previous event

Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena, I. Lazoglu, Virtual process systems for part machining operations, CIRP Annals, Volume 63, Issue 2, 2014, Pages 585-605. 



Modeling the Virtual Entity

Data-driven modeling

› Use machine learning libraries and high performance architectures to infer models 
from data

› Collects real-time data and historical data for model training, 
model verifying, and model updating

› Exploit available data (e.g., sensor data) to infer a 
model automatically

› User does not need detailed knowledge of the physical phenomenon 
(that may be too complex to model mathematically)

› Model keeps on improving as more data is collected

› Most advanced learning approaches are too complex to
be interpretable

› Not acceptable in critical contexts (e.g., healthcare)

Subbiah, Palani. Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform. Int. Journal of Advanced Manufacturing Technology

A. Rasheed, O. San and T. Kvamsdal, "Digital Twin: Values, Challenges and Enablers From a Modeling Perspective," in IEEE Access, vol. 8, pp. 21980-22012, 2020, doi: 10.1109/ACCESS.2020.2970143.



Modeling the Virtual Entity

A-PRIORI KNOWLEDGE

MEASUREMENT DATA



Modeling the Virtual Entity

Possible future direction: Hybrid Analysis and Modeling

› Combine physics-based models with data-driven intelligent models

› Remove shortfalls of both approaches
› Interpretability, robust foundation of the former

› Accuracy, efficiency, automatic pattern capabilities of the latter

› Fitting models to data, model order reduction, 
replacement of equations with ML, 
physics-informed ML, …

› Trade off between accuracy and simulation speed



Modeling the Virtual Entity

It may be necessary to enlarge the scope from single component to 
production line… 

› E.g., line and space optimization, occupancy simulation and optimization, supply chain 
monitoring

› Merge models of different aspects of the shop-floor, e.g., geometry, multi-physics, 
behaviors and rules, etc. 

› Correlation, mapping and fusion of different models with mutual influence

› Useful simulation tools that can be connected in closed loop with the physical 
production line like Plant Simulation

› Currently used for static digital twins

› Extend the simulation tool with communication to and from the physical line



Modeling the Virtual Entity

System level (production process or plant) 

MONITORING AND OPTIMIZATION OF PART FLOW, 

ENERGY CONSUMPTION, LINE ARCHITECTURE

MONITORING AND OPTIMIZATION OF 

PRODUCTION LINE



Modeling the Virtual Entity

System-of-Systems level

› Enterprise-wide view

› Less detailed model of single 
processes and equipment

› Global view of production, 
supply chain, etc. 

ENTERPRISE VIEW



Modeling the Virtual Entity

Models do not have to be new per se…

› Can use existing models at any level of detail

› Exploit the expertise and the available tools

Models and simulations must be enriched with 
communication with the physical entity and possibility to 
react to evolving conditions of the plant

› E.g., parameters are not constant and user defined but rather 
inputs (or elaborated from inputs) coming from the physical plant



Enabling technology: artificial intelligence (AI)

Digital twins must be able to run analytics in 
real time or faster, provide a high degree of 
prediction accuracy and integrate data from 
a collection of disparate and often 
incompatible sources

› Meeting these goals lies beyond the reach of 
traditional design and simulation technologies 

› Artificial intelligence to create models based on 
observed behavior and historical data rather than 
just the design information

PHYSICAL SPACE

WORKSHOP

PARTS MATERIALS

PRODUCT

VIRTUAL SPACE

WORKSHOP MODEL

DESIGN 
MODEL

PROCESS 
MODEL

PRODUCT MODEL



Enabling technology: artificial intelligence (AI)

…and in particular Machine Learning
› Ability of IT systems to independently find 

solutions to problems by recognizing 
patterns in data

Key idea: use real-time data and 
historic data for model training, 
model verifying, and model updating
› Real potential exploited now that 

massively parallel architectures allow 
efficient computation

› Computers are outperforming humans in 
many (even creative) tasks



Artificial Intelligence and Digital Twins

The digital twin continuously collects real-time data from the physical 
production line, to utilize real-time and historic data for model training, 
model verifying, and model updating
› Model is iteratively trained and optimized based on continuously updated and 

accumulated data

› Adapt to the continuous changes in the real factory environment

Still ongoing research
› AI systems to make predictions when data is abundant and the processes being 

evaluated are relatively simple

› Lack of data is a critical issue – data collection campaigns are necessary



Artificial Intelligence and Digital Twins

1. Data collection and cleaning
› Data might be incomplete, inconsistent  or 

contain errors and missing value

› Requires construction of a proper dataset

› Include potential defects and failure data, 
usually not available

2. Data is used to train the model
› Training data set used to learn specific 

parameters over the training period that will 
minimize prediction error

› Try different machine learning algorithms, e.g., 
random forest, neural networks

3. Evaluation on the test data set

DATA

MODEL

VALIDATION

TRAINING 

DATASET

MACHINE LEARNING 

ALGORITHM
PREDICTION

TEST DATA SET

OPTIMIZE

REAL-TIME 

DATA



Benefits of Artificial Intelligence with Digital Twins

Benefits: 

› Accurate and agile production control 

› Help to reduce the cost of inefficient production, improve the economic benefits and 
enhance sustainability

Limitations: 

› Few investigations on the theory, approach, process and guidelines of implementation 
of machine learning and digital twin in manufacturing 

› Still ongoing research, but for sure a promising direction!



Parts of a Digital Twin

CONNECTIONS
Enable closed-loop 

interaction between 

digital and physical 

elements

MODEL
Digital companion is made of a set of 

models

Reproduce with high fidelity the 

properties, behaviors and rules of the 

physical object

Operate autonomously in the virtual 

space

Ability to predict problems on 

physical side

Validate performance before system 

completion

DATA
Physical plus virtual 

data provides 

intelligence, e.g., 

digital model built from 

sensor data, decision 

based on simulated 

data, and operations 

based on predefined 

models

SERVICE
Encapsulate functions 

of the digital twin into 

services of easy and 

convenient usage



Enabling Connection

It is critical to build a connection between the virtual 
entity and the physical entity for data exchange
› Backbone of the digital twin

Involves a number of technologies
› Communication protocol analysis

› Real time communication mechanisms

› Wireless communication, but not exclusively (e.g., RFID, Ethernet)

› Protocol standardization
› Crucial to enable interoperability and extensibility

› Stable interaction and cooperation

› Middleware technology

› Devices for access to communication

CLOUD 

AND BIG 

DATA



Internet of Things (IoT)

Industrial IoT employs a network of sensors to 
collect critical production data and uses cloud 
software to turn this data into valuable insights 
about the efficiency of manufacturing operations
› Visibility into shop floor and field operations

› Visibility into the manufacturing supply chain

› Visibility into remote and outsourced operations 

Worldwide numbers: 
› 62% of surveyed manufacturing enterprises are already executing digital transformation pilots 

› 86% of manufacturers have already adopted IIoT solutions and 84% of them find IIoT extremely 
effective

› IoT applications in manufacturing are expected to generate $1.2 to $3.7 trillion of economic value 
annually by 2025



Internet of Things (IoT)

Mainly adopted in industrial contexts for:
› Cost reduction

› Optimized asset and inventory management, reduced 
machine downtime

› Shorter time-to-market
› Faster and more efficient manufacturing and supply 

chain operations

› Mass customization
› Source of real-time data required for thoughtful 

forecasting, shop floor scheduling and routing

› Improved safety
› Addresses safety problems in potentially hazardous 

environments

SENSORS AND 

CONTROL

DATA 

COLLECTION

ANALYTICS AND 

ADJUSTMENT



Internet of Things (IoT)

Three different data technologies depending on where data is stored and processed
› Edge computing

› Computing to the edge of the network (closer 
to data sources)

› Allow real-time sensing and actuation and agile 
connectivity with few computing resources

› Enhance security and minimize data transfers

› Cloud computing
› Data stored and processed on servers

› Ubiquitous convenient on-demand access to 
shared resources

› High computing and storage capabilities

› Security issues: public/private/hybrid

› Fog computing
› Mix of the two approaches

› Portions of data stored locally 



Internet of Things (IoT)



Internet of Things (IoT)

SYSTEM-OF-SYSTEMS LEVEL:

ENTERPRISE-WIDE PERSPECTIVE

MASSIVE DATA

CONECTION TO ERP AND MES

UNIT LEVEL:

BASIC ATTRIBUTES + REAL TIME 

SENSOR DATA WITH LOW LATENCY

LOW COMPUTING POWER



INFORMATION TECHNOLOGIES 

MANAGES FLOWS OF DIGITAL 

INFORMATION (HTTP, REST)

INTERNET OF THINGS

PHYSICAL OBJECTS THAT ARE EMBEDDED WITH 

SENSORS, PROCESSING ABILITY, SOFTARE, AND 

TECHNOLOGIES THAT CONNECT AND EXCHANGE 

DATA WITH OTHER DEVICES AND SYSTEMS OVER 

COMMUNICATION NETWORKS

OPERATIONAL TECHNOLOGIES 

COMPUTING AND COMMUNICATION SYSTEMS TO MANAGE, MONITOR AND CONTROL 

INDUSTRIAL PHYSICAL DEVICES AND PROCESSES

E.G., MODBUS OPEN STANDARD USED TO 

COMMUNICATE OVER SERIAL OR ETHERNET WITH 

PLC, HMI, I/O DEVICES AND SENSORS

MASTER-SLAVE APPROACH

NOT PROTECTED AGAINST CYBERSECURITY 

ATTACKS OR INTERNAL SECURITY BREACHES



Parts of a Digital Twin
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data provides 
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digital model built from 

sensor data, decision 

based on simulated 
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based on predefined 
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Encapsulate functions 

of the digital twin into 

services of easy and 
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Data Management

The first critical aspect is data generation

› Embed the physical entity with sensors 
› Choose the relevant information to be monitored

› Sensor layout optimization to reduce redundant information, improve utilization rate of sensors, and keep 
stability of collected data

› Choose communication technology
› RFID to track and identify entities

› Wireless sensor network to generate data autonomously for each physical entity, then process and collect 
data at a central location

› Consider adopting soft sensors to estimate physical entity parameters that are difficult 
to measure in hardware



Data Management 

Digital twins must handle a massive amount of data
› Must process a data from a variety of channels: machine, 

physical environment, virtual space, historical database, 
etc. 

It is necessary to perform data preprocessing to 
clean data and prepare it for advanced data 
analysis methods 

Standardization is (one of) the keys
› Enable and ease interoperability and extensibility

› Ease data management and cleaning

› Allows to automate conversion between different 
(standard) formats

CLOUD 

AND BIG 

DATA



Data Management

Data collection
› Issues due to data volume, variety, velocity and heterogeneity

› Deal with dirty data, e.g., duplicated, incorrect, incomplete or delayed

Data pre-processing
› Cleaning (remove outliers and repeated data) and aggregation (e.g., over time windows)

› Feature extraction and selection

Data elaboration
› Derive understandable and meaningful information from data

› Clustering: discover groups of data with similar behaviors
› May require manual labeling from a human expert

› Mining: discover patterns in large sets of data (e.g., ML)

Data security
› Confidential and critical data for the company





Data driven means circular and iterative

› Start with simple and robust models deeply 
rooted in the business expertise, and build more 
complex and refined models step by step

Data driven means that for most complex, real-
world scenarios we cannot anticipate exactly 
the result of a single analysis

› We must follow the scientific method and be 
prepared to reject hypotheses, but we can also 
discover new and useful aspects of the process

Big Data and Digital Twins



Time series databases

Database
› Organized collection of data stored and accessed electronically from a computer system

Time series database 
› Optimized for time-stamped or time series data: measurements or events that are tracked, 

monitored, down-sampled, and aggregated over time 

› Offer time-stamp data storage and 
compression, lifecycle management
and summarization, ability to handle
scans of many records, and time 
series aware queries

› Keep high precision data around for a 
short period of time

› Request a summary of data over a large 
time period (e.g., percentile increase)



Time series databases

Cassandra
› Can be used for time series too 

› Offers optimizations for storing and retrieving temporal data, such as its 
reordering according to the timestamp key

› Favours retrieval tasks based on time ranges

MongoDB
› Document-oriented

InfluxDB
› Defined specifically to handle Time Series

› Data is physically ordered by time

› Ability to define, for a given data group, some retention policies, i.e. 
specific rules to manage old data (e.g., deleting all the data older than 
three months or replacing them with some aggregated values)

› Possibility to define continuous queries, i.e. a query tool able to work 
continuously on a stream of input data, rather than in a batch fashion

S. Di Martino, L. Fiadone, A. Peron, A. Riccabone and V. N. Vitale, "Industrial Internet of Things: Persistence for Time Series with NoSQL Databases," IEEE WETICE, 2019, pp. 340-345



InfluxDB



InfluxDB

RETENTION: HOW LONG 

SHALL I STORE AND 

ANALYSE DATA?

VISUALIZE RAW DATA 

WITH FIXED TIMESTAMP 

INSTEAD OF 

AGGREGATED DATA

HOW TO 

AGGREGATE 

SAMPLES
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Service Modeling

Define services, i.e., functions with friendly interface for easy and on-demand 
usage
› What do I want to report to the user? And how? 

› How to make information readable? 

› Support to decision making

Enable convenient access to digital twin data and functionality
› Bridge between the manufacturing physical space and virtual space

Services as a mean to add value to the product
› Manufacturing as a service, on demand access to digital twin 

and related services

› Enable resource sharing and cooperation 



Service Modeling

Example of services: 

› Resource management (models, 
connections, data)

› Visualization and encapsulation of 
services provided by the digital twin

› Service evaluation (e.g., time, cost, 
reliability, energy efficiency)

› Human-machine interface and 
training

› Quality and health records



Service Modeling

Complex and dynamic smart decision-making problems

› E.g., energy consumption management, precise control, predictive maintenance

Services are used to build a bridge between the manufacturing physical space 
and virtual space

› E.g., production scheduling, product quality management, equipment health 
management

› Fusion and collaboration of services through dynamic service invocation, scheduling 
and combination



Service Modeling

All manufacturing resources and capabilities in product lifecycle can be 
virtualized and encapsulated in services

› Resource services

› Developed from equipment, materials, hardware resources

› Can encapsulate dimensions of the digital twin

› Information services

› Software resources, such as professional software, experience models, domain knowledge, 
algorithms

› Extended to capabilities such as design, simulation, production and maintenance

› Prediction models, maintenance scheduling, visualization applications

› Augmented reality and 3D modeling and simulation tools



Service Modeling

Physical entity services

› Description and status: name, ID, location

› Quality of service: time, cost, reliability, satisfaction

› Capacities: precision, size, process

› Real-time status: overload, idle, in maintenance

Virtual entity services

› Can be shared and accessed by multiple users at the same time

› Corresponding physical entity, creator, owner, online site

› Quality of service of the virtual entity: cost, reliability, functions, etc. 



Service Modeling

Data services

› Allow simplified access to data 
through unified templates

› Data provider, sources, type and 
description

› Encapsulate information relative to 
different entities in a chosen 
language, e.g., XML



Grafana

Open source observability stack that allows you to monitor and analyze 
metrics, logs and traces

› Query, visualize, alert on and understand data 

› Create dashboards to show data evolution, statistics, etc. 



Parts of a Digital Twin

CONNECTIONS

MODEL

DATA

SERVICE



APPLICATIONS IN PRODUCT LIFECYCLE



Digital Twins in the Production Lifecycle

At which stage are Digital 
Twins useful? 

When and how are 
Digital Twins employed? 



Digital Twins in the Production Lifecycle

DESIGN PHASE
Digital twin-based 

methodologies

• More responsive, efficient, 

and informed design of 

products

• Physics-based modeling

• Conceptual design and 

pre-verification

• Prediction of performance 

and quality at early stages 

of design

• Deal with uncertainty and 

lack of physical data to 

eliminate potential failures

Stephen Ferguson, Edward Bennett, Artem Ivashchenko, Digital twin tackles design challenges, World Pumps, Volume 2017, Issue 4, 2017, Pages 26-28.



Digital Twins in the Production Lifecycle

PRODUCTION PHASE
Improve the production 

process: virtual space mirrors 

physical space in timely 

manner and controls physical 

behaviors in real time

• Production becomes more 

reliable, flexible and 

predictable

• Visualize and update real 

time status

• Accurate forecasting

• Optimize energy 

consumption and 

throughput, make timely 

adjustments

• Prolong machine lifetime

Ján Vachálek, Lukáš Bartalský, Oliver Rovný, Dana Šišmišová, Martin Morháč, Milan Lokšík, The Digital Twin of an Industrial Production Line Within the Industry 4.0 Concept, 2017



Digital Twins in the Production Lifecycle

MAINTENANCE PHASE
Combine sensor and historical 

data for fault prediction

• Multi-physics, multi-scale 

modeling

• Machine learning

• Integrate models and 

simulated data to 

generate valuable 

information for efficiency, 

accuracy and 

maintenance 

• Increase reliability and 

prolong machine lifetime

Fei Tao, Meng Zhang, Yushan Liu, A.Y.C. Nee, Digital twin driven prognostics and health management for complex equipment, CIRP Annals, Volume 67, Issue 1, 2018, Pages 169-172



Digital Twins in the Production Lifecycle

ACROSS ALL PHASES
The digital twin can integrate data from the various stages 

seamlessly

• Design digital twin adjusted during service for 

maintenance

• Support across product lifetime

• Secure good geometrical quality through statistical 

variation simulation (design), inspection (pre-production) 

and root cause identification (production)

• Historical lifecycle experience used in design to make 

accurate simulations of variations, detect faults and their 

cause

Fei Tao, Meng Zhang, Yushan Liu, A.Y.C. Nee, Digital twin driven prognostics and health management for complex equipment, CIRP Annals, Volume 67, Issue 1, 2018, Pages 169-172



Digital Twins in the Production Lifecycle

Production and maintenance are the most 
popular fields of application

› Maintenance was the first field of application
› Lots of attention, time and resources

› Still limited application

› Production to realize smart operations
› Great potential in real-time control and optimization and for 

accurate prediction

› Future stage of application

› Covering all stages requires high data integration 
effort
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INDUSTRIAL APPLICATIONS



Current landscape

https://www.grandviewresearch.com/industry-analysis/digital-twin-market



Future market

Despite of the challenges, digital twins have 
very promising prospects

› Different estimations but all agree on a growth 
of Revenue Growth Rate (CAGR) higher than 
40%

https://www.kbvresearch.com/digital-twin-market/



Industrial applications

Despite of the challenges, digital twins are already applied in industry in a 
number of contexts



Digital twin in Aerospace

Earliest industrial domain adopting digital twins
› Large companies combined digital twin technology 

with their business, including maintenance, 
production, assembly, safety and security 
management 

› Airbus, Boeing, General Electric Company, …

Mature application scenario
› Good amount of research 

› Can perform real time prediction and high fidelity 
validation in virtual space

› Important to improve reliability, reduce accidents and 
conserve resources 



Digital twin in Electric Power Generation

Digital wind farm to collect real-time data, optimize maintenance of each 
turbine to increase annual energy production

› Mix and match different turbine configurations 

› Collect and analyze data from the real-life version 

› Increase efficiency (average loss -10% to -33%, +20% efficiency)

Real-time data management

› Acquire and manage critical data to view and 
control turbines in real time

› Protection from digital threats

https://youtu.be/OZ-N3h40lPc

https://www.ge.com/renewableenergy/wind-energy/onshore-wind/digital-wind-farm



Digital twin in Automotive

Car are becoming more complex, with higher requirements for high precision 
testing and maintenance
› Make repair scenarios for trucks and locomotives

› Collect real time data to find out why the breakout happened, e.g., health conditions of parts or 
changes in relevant variables

› Find how the breakout happened and reproduce engine or vehicle model under specific conditions

› Reduce downtime cost and duration

› Optimize fuel efficiency

› Taycan Porsche is provided with a digital twin 
› Recommend optimal time and required scope of service

› Customize service intervals and allow servicing for specific 
components, based on how the customer uses their vehicle

https://newsroom.porsche.com/en_US/2021/technology/porsche-digital-chassis-twin-26323.html



Digital twin in Oil and Gas

Remote areas with severe conditions with many 
issues in process management
› Unplanned downtime leads to loss of revenue and 

profitability up to $1 trillion per year

Emergence of digital twins brings opportunity to 
improve maintenance and operation
› Help operating under risks

› Equipment installation and maintenance

› Identify and manage changes in design

› Efficient means for data collection, visualization 
and state monitoring

https://youtu.be/OZ-N3h40lPc

https://www.ge.com/renewableenergy/wind-energy/onshore-wind/digital-wind-farm



Digital twin in Healthcare and Medicine

Personalized medicine

› Models of a human organ accounting for blood 
flow, mechanics and electricity

› … or even of a whole human! 

› Possible applications: 

› Discover undeveloped illnesses to improve patient care

› Experiment with treatments and develop innovative 
ways to deal with difficult illnesses/understand how 
different individuals would react

› Improve preparation for surgeries

› In the future may also help physicians optimize the 
performance of patient-specific treatment plans

https://youtu.be/H6JzPCbyVSM

https://www.challenge.org/insights/digital-twin-in-healthcare/



Digital twin in Maritime and Shipping

Digital twins attracted attention for the creation of «virtual sister ship»

› Support data visualization and analytics
› High speed real time sampling

› Compared with data from the model to detect difference or performance degradation

› Optimization of performance and communication

› Ease system integration and quality assurance
› Predictive analytics of critical equipment

› Solve problems before they actually impact on ship operation

› Systematic framework to produce information 
and high quality reports

› Training personnel



Digital twin in City Managment

Widely known example is Singapore: 

› Enable virtual experiments and large scale 
simulations to optimize

› Way to improving accessibility, simulating emergency 
situations

› E.g., heating or cooling to optimize consumption 

› Intelligence in operation, analysis, and prediction

› Long term planning and decision making
› Scale from a single building to a portfolio of hundreds and 

even thousands of building

https://youtu.be/QnLyy0owGL0

https://www.smartcitylab.com/blog/digital-transformation/singapore-experiments-with-its-digital-twin-to-improve-city-life



Digital twin in Agriculture

Potential to revolutionize agriculture
› Remote monitoring of growing cultures and 

cattle

› Recording and identifying pests and diseases

› Monitor and optimize management of silos of 
livestock farms

› Track machinery fleet in real time

› Accelerate farm supply, production, harvest, 
packaging and distribution

Will be an indispensable technology for the 
agriculture of the future



Digital twin in Construction

Help in all phases, from design and 
construction to operation

› Access and analyze real time data and historical 
data plus documents

› Support decision making to make effective and 
timely changes during design phase

› Centralized construction data collection and 
management, handle all activities and documents

› At handover, make available models and 
information in one place 

› Optimize building operation and occupation, 
monitor resources and waste, prevent hazards



Digital twin in Security and Emergency

Digital twins can be adopted for security and emergency measures, to achieve 
lower costs and better performance and guarantees

› Data from the lifecycle can be used to generate valuable information for handling with 
machine failures, and for predicting and applying maintenance before the occurrence 
of failures

› As soon as an anomaly occurs, it is then possible to digitally replay exactly what happened to the equipment 
and perform diagnostics, assess the gravity of the situation, and identify root causes

› Replace or complement physical inspections in hazardous environments
› Visibility and predictability without embarking on a costly and risky physical exploration

› Reduce the risk of unnecessary shutdowns or damages due to errors in judgment

› Security of equipment and staff can be guaranteed



EXAMPLE OF DIGITAL TWIN OF A ROBOT ARM
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Why a robot arm

Widely used in manufacturing scenarios

› Exposed to physical stress

› May be harmful to nearby humans

Desirable to have a way to monitor its
behavior to intercept anomalous behaviors
or even predict future failures

› How can we approach its modeling? 

› Goal: not reproducing its movement but rather
apply anomaly detection



Data collection from the robot arm

Setup of the monitoring infrastructure
› 11 sensors overall 

› 5 gyroscopes and 5 accelerometers to detect movement 
(positions 1 to 5)

› 1 power sensor to detect power consumption (position P)

› Attached to the existing “non digital” arm

› Overall 56 different signals

Setup of the network infrastructure
› Sensors natively communicate via Modbus

› Data sent to a gateway and forwared to an InfluxDB
database



Data collection infrastructure

To have a clear view of the arm conditions
it is important to consider simultaneously

› Sensor data traces

› What the arm is doing/supposed to do

How to merge such information?
› Usually commands are labels applied by 

hand (costly, errors, small datasets)

› Alternative: apply automatic data fusion and 
labeling

› Merge information from different sources

› Handle different types/formats and time scales

› Automatic rich dataset



Incremental models of the digital twin

Manually applied labels

› Few samples available with limited annotations (e.g., only commands with no 
parameters) – limited visibility on arm operating conditions

› Different kind of models with different levels of accuracy

› Focus on power consumption

POWER STATE MACHINE: 

VERY ABSTRACT, TYPICAL 

CONSUMPTION

MOVING AVERAGE BASED ON MEAN 

AND STANDARD DEVIATION FOR 

OPERATING MODE

NEURAL NETWORK MODEL: 

RELATIONSHIP BETWEEN OPERATING 

MODE AND CONSUMPION 



More complete model

Automatically labelled data

› Longer acquisitions (e.g., hours of operation 
with 1s time step for sensors)

› Slice each signal based on annotated 
operating mode

› Statistical feature extraction and feature 
selection to identify most relevant aspects

› Accelerometers 2, 4, and 5 plus power sensors are 
the most informative data sources

› Resulting features (from 1980 to 50) used to 
construct a classifier



More complete model

Evaluation of different classifiers and 
different sampling rates of sensor data

› Increasing accuracy at increasing sampling 
frequency

› Multilayer Perceptron (MLP) is the one that 
provides the highest and most balanced 
mean accuracy values (97.6±2.5% at 10 Hz)

› Bayesian (MLP-B) also provides a measure 
of confidence 



Anomaly detection

Use the classifiers to detect anomalous behaviors

› Action predicted is different from the one specified by the MES → ANOMALY!

› Action predicted with low confidence → POTENTIAL ANOMALY!

› 79% anomalies detected correctly

Interesting: we do not need to train the algorithms on specific anomalies

› Anomalies are not known at the beginning of equipment lifetime 

› Not all typical anomalous behaviors may be known

Next step: cloud/edge partitioning



Wrap up!

Digital twins are CPS seen from a different
perspective (engineering/manufacturing)

› Focus on data and its management
› Wide exploitation of data-driven methods as physical

entities are complex or difficult to model otherwise

› Benefit from related technological research
› Span across all modern technologies, from IoT and 

cloud to cybersecurity and data analysis

› Strong pressure from the market
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