

CHAOS - Configurations Analysis of Swarms of Cyber-Physical Systems

Valeria Trombetta¹, Maxime Cordy¹, Enrico Tronci² and Axel Legay³

Introduction and Motivation (1 / 6)

- Cyber-Physical Systems (CPS)
- Simulations of CPS

2

- Noises & Disturbances (N&D)
- Variability in CPS

Introduction and Motivation (2 / 6)

Variability in CPS

3

- Variety of contexts
 - Environmental conditions
 - New costumer requirements

The main issue

• Develop new variants is expensive

Introduction and Motivation (3 / 6)

The approach

9...

- Injection of <u>variation points</u>
 - Variability-Intensive Systems (VIS)

VIS as a large class system

- Software Product Lines
 - Variation points as Features
 - Configurable Systems
 - Variation Points as Configuration Parameters

Introduction and Motivation (4 / 6)

The concept of Variability

- Each fashion in which the variants are not equal
 - Different values for a variable

The purpose

Get a variant that satisfy the requirements
With the highest probability
In the majority of contexts

Introduction and Motivation (5 / 6)

The problems of Variability

- Get the appropriate variant is not trivial
 - The variability affects the system behavior
 - It can lead to an exponential computation
 - Multiple criteria and constraints in case of multidomain VIS
 - Uncertainties (N&D) can trigger unpredictable behavior of the system

Introduction and Motivation (6 / 6)

VIS Variability

7

- Design-Time
 - Requirements have been a-priori defined
 - The aim is to discover which variants are more likely to satisfy the requirements

Run-Time

 A variant is already running and it is faced to uncertainties
The goal is to switch to another variant to ensure that requirements are still satisfied

Main purposes of the project (1 / 1)

- help engineers to explore all the possible and appropriate design alternatives wrt: the budget
 - the scenario the mission
- Evaluate which kind of variable had a major impact on the configuration
- Identify which uncertainties affected the system at most
- Explore the state space
- Provide an easy-reusable and extendable tool
- A realistic case-study entirely customizable

Framework (1 / 1)

Case- Study (1 / 1)

Swarm of Drones

- Drones Features
 - Battery (H-M-L)
 - Radio (H-M-L)
 - > TX
 - > RX
- Drones Characteristics
 - Anti-collisions
 - Same velocity

- Constraints on spawn point and locations
 - Wrt the target and obstacles
 - Wrt the swarm

Uncertainties (1 / 1)

Noises

Gusts

- **Obsctacles**
 - Constraints on spawn point (like drones)
 - Anti-collision (like drones) **
 - ** Absent
 - Present
 - ➢ Fixed

- Moving (Random Motion)
- Target
 - Unique & always present **
 - Fixed or Moving (Random Motion)
 - Constraints on spawn point **

A general example of scenario (1 / 1)

Research Questions (1 / 3)

RQ1: Given a scenario, is it fundamental to monitor the effect of variability even in small systems? **ARQ1**: Yes, even in small systems like drones which in our case study have only 2 features, especially when in the swarm there are few drones.

RQ2: What is the total size of configuration space composed by multiple small configuration systems and their scenarios? **ARQ2**: The total size of configuration space is 12264

RQ3: Can we reduce this complex configuration space to a smaller step of solutions? **ARQ3**: Yes, but the only if the drones are all identical (e.g. top quality ones)

Research Questions (2/3)

RQ4: Do the identified best configurations remain valid in the presence of uncertainties? **ARQ4**: Yes, they change only in case of gusts (better quality drones) or mobile target (extra drones).

RQ5: Given a set of scenarios, can we identify the optimal configuration wrt the budget and the desired assurance level?

ARQ5: We identified a set of configuration that over the 12264 analyzed, assures a probability of success of 96% minimizing the expenditure of the budget.

RQ6: Do the identified configurations remain valid taking into account both the design-time and run-time variability? ARQ6: [In a development phase]

Research Questions (3 / 3)

RQ7: Given a set of scenarios, an assurance level, a budget whose expenditure must be minimised, is the identified configuration the same for both design and run-time? ARQ7: [In a development phase]

RQ8: Is it feasible to develop an approach to reduce the computational time related to the simulations? **ARQ8**: [In a development phase]

Future Directions (1 / 1)

- Validate the approach with further models also belonging to further domains, multi-target setting, and different scenarios (e.g. military ones with attacking drones/obstacles/target).
- Adopt different kind of uncertainties.
- Insert a leader in the Swarm for reconfiguration purposes.
- **ARQ6** Preliminary experiments have shown that given a budget and a level of assurance it is possible to find the optimal configuration wrt all of these.
 - **ARQ8** It is under development an approach based on simulation snapshots.
- Answer **RQ1**, **RQ2**, **RQ3** and **RQ7** by performing experiments considering various specific safety industrial standards, additional missions and scenarios, by testing the validity to handle variability at design-time and run-time.

Thanks for your attention.

