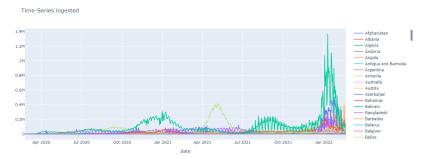
T4C: A Framework For Time-Series Clustering-As-A-Service CPSWS 2022

Alessandro Falcetta Manuel Roveri

Politecnico di Milano


September 2022

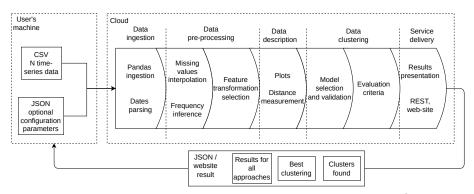
CPSWS 2022

- Recent years showed more and more integration between Machine (ML) and Deep Learning (DL) and Cloud computing;
- This led to the *as-a-service* paradigm, where services based on ML and DL are offered directly to end-users;
- Notable examples include image recognition¹, text-to-speech, speech-to-text².

¹Myeongsuk Pak and Sanghoon Kim. "A review of deep learning in image recognition". In: 2017 4th international conference on computer applications and information processing technology (CAIPT). IEEE. 2017, pp. 1–3.

²M Shamim Hossain and Ghulam Muhammad. "Cloud-assisted speech and face recognition framework for health monitoring". In: *Mobile Networks and Applications* 20.3 (2015), pp. 391–399.

How can we offer time-series clustering models, following the as-a-service paradigm, directly to end users?

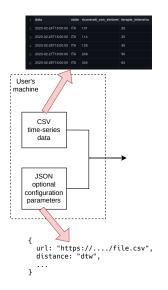

(日) (四) (日) (日) (日)

- There are various software libraries which offer helper functions to use time-series clustering models in a simple way, like *tslearn*³;
- Nonetheless, they are not meant to be used in a as-a-service manner;
- AWS Forecast⁴ and TIMEX⁵ (on which this study is based) are two solutions for time-series forecasting which can be used in a as-a-service manner.

⁴Amazon Web Services Inc. *Amazon Forecast*. 2021. URL: https://aws.amazon.com/forecast/.

³Romain Tavenard et al. "Tslearn, A Machine Learning Toolkit for Time Series Data". In: *Journal of Machine Learning Research* 21.118 (2020), pp. 1–6. URL: http://jmlr.org/papers/v21/20-091.html.

⁵Alessandro Falcetta and Manuel Roveri. "TIMEX: an Automatic Framework for Time-Series Forecasting-as-a-Service". In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. The Sixth International Workshop on Automation in Machine Learning. 2022.

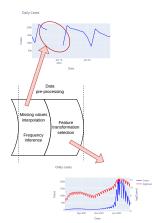

Software implementation released as an open-source repository⁶ and on PyPI.

CPSWS 2022

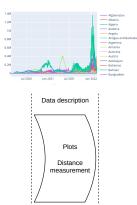
A D N A B N A B N A B N

⁶https://github.com/uGR17/T4C_CLUSTERING

T4C User's machine



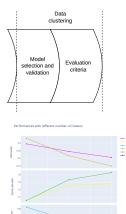
- The time-series clustering pipeline starts on the user's machine;
- It is assumed that the user has a dataset of time-series to cluster, and an optional JSON file containing configuration parameters to tune T4C, if desired.



- The CSV is loaded and transformed in a Pandas DataFrame;
- The first column is used as time-index, with its values automatically parsed in datetime objects.

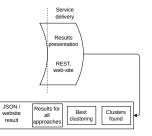
T4C Cloud - Data pre-processing

- The frequency of the time-series is estimated, if not specified by the user;
- Any missing value is obtained with interpolation.
- To ease the *clustering* step, various feature transformations are applied (e.g., logarithmic one).

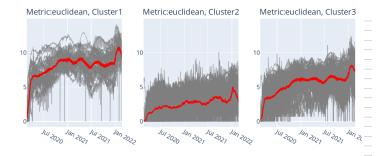


[euclidean, dtw...]

- In this step various plots are automatically generated with the Plotly library;
- Distance metrics are computed for the time-series in the datasets.

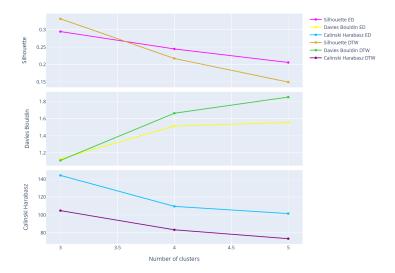

Image: A matrix

ヨト イヨト


- The available models are all tested on the dataset, such as K-Means and Gaussian Mixture;
- The models are tested with different feature transformations and with different amounts of clusters.

< □ > < 凸

- The final result, which includes the plots and the clustering, can be returned to the user through a REST endpoint (as JSON/ZIP format), or through a website.
- The latter solution is implemented using the Dash library.


Use case: https://clustering.covid-timex.it

12/14

Use case: https://clustering.covid-timex.it

Performances with different number of clusters

CPSWS 2022

э

< 47 ▶

Use case: https://clustering.covid-timex.it

Cluster 0	Cluster 1	Cluster 2	
Argentina	Afghanistan	Albania	
Brazil	Andorra	Algeria	
Colombia	Angola	Armenia	
France	Antigua and Barbuda	Australia	
Germany	Bahamas	Austria	
India	Barbados	Azerbaijan	
Iran	Belize	Bahrain	
Italy	Benin	Bangladesh	
Mexico	Bhutan	Belarus	
Netherlands	Burkina Faso	Belgium	
Russia	Burundi	Bolivia	
South Korea	Cambodia	Bosnia and Herzegovina	