

Efficient Design of Scalable Indoor Positioning System based on Wi-Fi Fingerprinting

Emad Ebaid

PhD student in Communication Systems

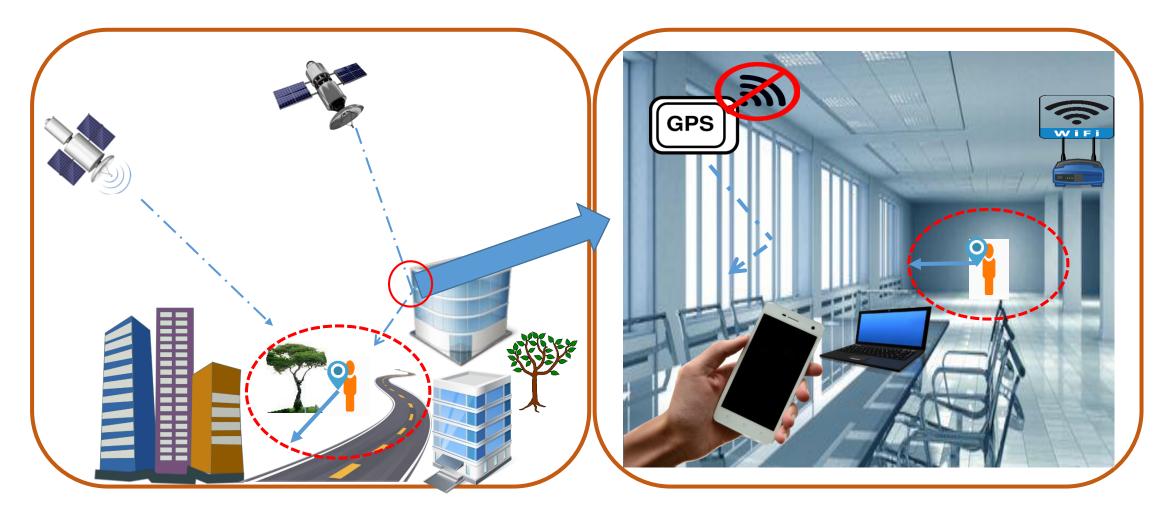
School of Computing and Communications Lancaster University

Supervisor

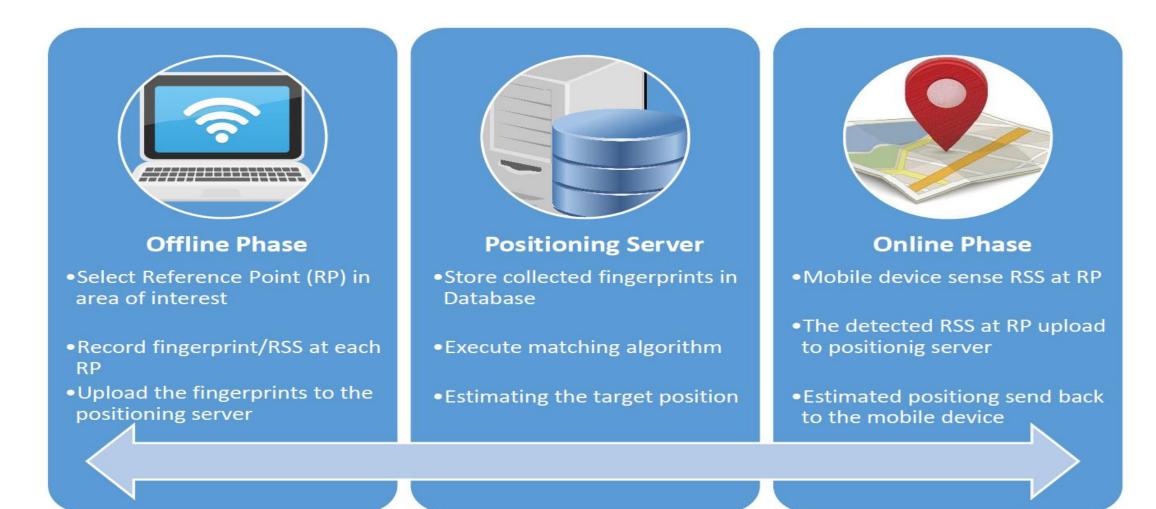
Dr Keivan Navaie

Contents

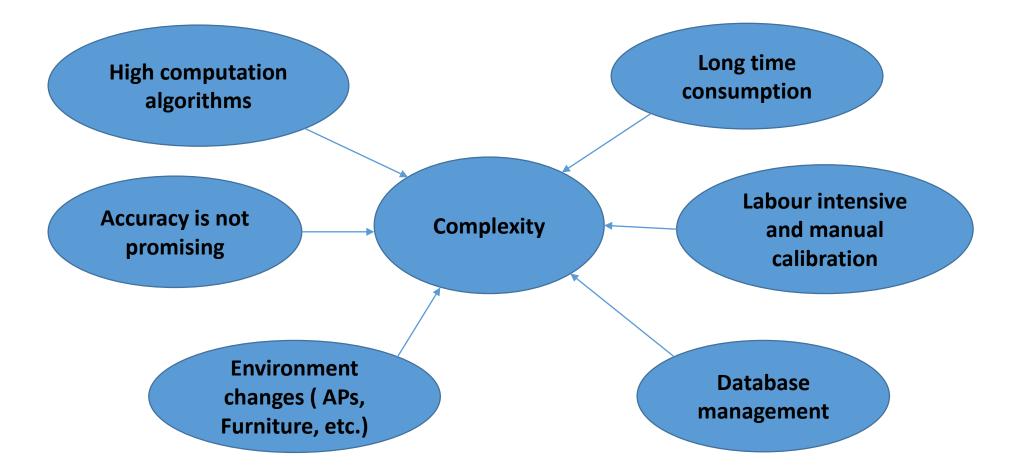
1. Introduction


- 1) Research Problem
- 2) Research Motivation
- 3) Research Contribution
- 4) Research Proposed Plan

2. Research Progress


- 1) Achieved Results
- 2) Next Work

3. Related Work


Indoor Positioning System (IPS)

Wi-Fi Fingerprinting Technique

1.1 Research Problem

1.2 Research Motivation and Objectives

To build cost-effective IPS by reducing the complexity of the IPS while maintaining efficiency and scalability.

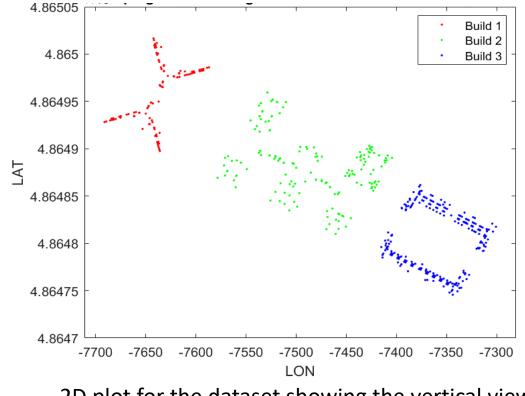
Our objectives:

- Improve positioning accuracy and reduce the complexity of Algorithm calculations.
- Improve system scalability and reduce database-fingerprinting complexity.

1.3 Research Contribution

We expect this work makes three contributions:

- To simplify the Wi-Fi fingerprinting technique for indoor positioning.
- To propose an optimal IPS Wi-Fi fingerprinting system with acceptable accuracy and scalability.
- To identify Key Performance Indicators (KPI) for efficient design of IPS.


1.4 Research Proposed Plan

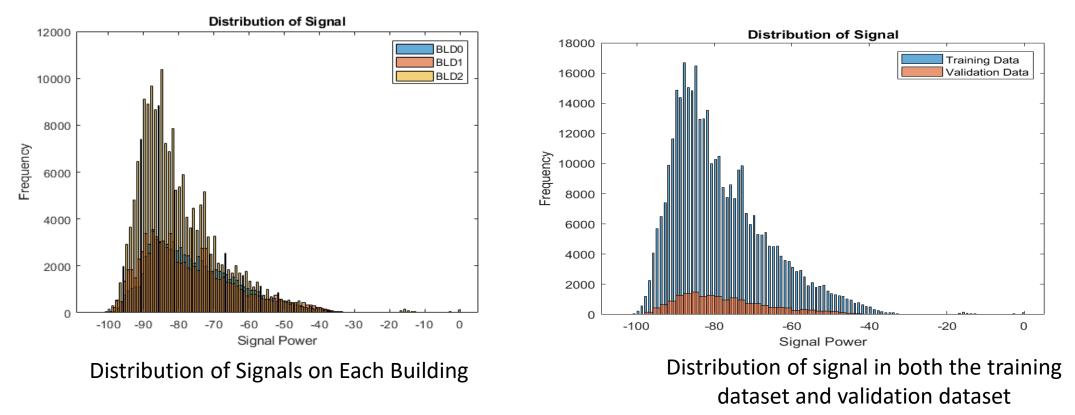

- Technology Wi-Fi Fingerprint
- Environments Indoor buildings with Wi-Fi infrastructure
- Applications: Locating people and objectives
- Methodology: Exploratory and Simulation based research
- Experiments: MATLAB and Public database (UJIIndoorLoc)

UJIIndoorLoc Database

- Built by Joaquín Torres-Sospedra et al. at Jaume I University campus, Spain.
- Area covered of 108,703m2, 3 buildings with 4 or 5 floors.
- 933 reference points (RPs) in the database.
- 19,938 sample points were obtained for training dataset.
- 1,111 sample points were obtained for validation dataset.
- In total 21,049 sample points.
- 520 different Wireless Access Points(WAPs) appeared in the database.
- Data collected by more than 20 users with 25 different mobile device models.

UJIIndoorLoc Data Records and Location

2D plot for the dataset showing the vertical view of the three buildings


Jaume I University campus on Google Map

20/09/2022

UJIIndoorLoc Database

An example of entry sample from UJIINdoorLoc dataset

[1]	 [520]	[521]	[522]	[523]	[524]	[525]	[526]	[527]	[528]	[529]
WAP ₀₀₁	 WAP_{520}	Longitude	Latitude	Floor	BuildingID	SpaceID	Rel.Pos.	UserID	PhoneID	Time
-97	 +100	-7594.7	4864983.9	3	0	111	2	11	13	1370340142

2 Research Progress

- Testing KNN, WKNN and SVM algorithms on UJIIndoorLoc datasets.
- Further investigating KNN and WKNN algorithms
 - Data representations (*Positive, Exponential, Powered*)
 - Distance Functions (Cityblock, Euclidean, Minkowski, Cosine and Correlation)
 - K-value (1 to 50)
 - Distance Weight (*inverse distance* and *squared inverse distance*)
- Tuning WKNN with Exponential data representation, Correlation distance, inverse weight, and k=26.

2.1 Achieved Results

• Improving the positioning accuracy of Wi-Fi RSSI-based systems*.

*Our results are promising but the work is under submission in another conference.

2.2 Next work

Proposing and Testing Cloud-based IPS and analysis the system performance.

The design considers the deployment efficiency of Wi-Fi – Access Points (WAPs), fingerprint database, and Cloud management, and accordingly set the system requirements for optimal performance.

3 Related Works

Comparison of the existing systems in the literature for RSSI-based IPS.

System	Technique	Accuracy	Scalability	Complexity	Cost
RADAR [17]	RSSI	>2m	High	Low	Low
Horus [18]	RSSI	Avg. Error 0.6m	High	Low High	Low
Ashami et al.[20]	RSSI	Avg. error 1.2m up to 98%	High		
DeepNar [22]	RSSI/trilateration	<1m and avg. error <0.75m	Low	High	High
Jin et al. [13]	RSSI	80% in 1.9m	High	Low	Low
Our study aims to	RSSI	Acceptable	High	Low	Low

Reference

[1] K. Merry, and P. Bettinger, "Smartphone GPS accuracy study in an urban environment," *PLOS ONE*, vol. 14, no. 7, pp. e0219890, 2019-07-18, 2019.

[2] L. Qi, Q. Jiahui, and C. Yi, "Research and development of indoor positioning," *China Communications*, vol. 13, no. Supplement2, pp. 67-79, 2016.

[3] R. F. Brena, J. P. García-Vázquez, C. E. Galván-Tejada, D. Muñoz-Rodriguez, C. Vargas-Rosales, and J. Fangmeyer, "Evolution of Indoor Positioning Technologies: A Survey," *Journal of sensors*, vol. 2017, pp. 1-21, 2017.

[4] S. Wilson, O. Michael Adeyeye, and M. Nhlanhla Bw, "A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies," *South African Computer Journal*, vol. 29, no. 3, 2017.

[5] F. Zafari, A. Gkelias, and K. Leung, "A Survey of Indoor Localization Systems and Technologies," 2017.

[6] H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of Wireless Indoor Positioning Techniques and Systems," *IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews,* vol. 37, no. 6, pp. 1067-1080, 2007.

[7] G. M. Mendoza-Silva, J. Torres-Sospedra, and J. Huerta, "A Meta-Review of Indoor Positioning Systems," *Sensors (Basel, Switzerland)*, vol. 19, no. 20, pp. 4507, 2019.

[8] K. Al Nuaimi, and H. Kamel, "A survey of indoor positioning systems and algorithms," 2011, pp. 185-190.

[9] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, L. Ran, Y. Chau, R. Raulefs, and E. Aboutanios, "Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications," *IEEE Communications Surveys & Tutorials*, vol. 19, no. 2, pp. 1327-1346, 2017.

[10] K. Kaemarungsi, "Efficient design of indoor positioning systems based on location fingerprinting," 2005, pp. 181-186 vol.1.

[11] Z. You, O. Baala, and A. Caminada, "Efficient design of indoor positioning systems based on optimization model," 2010, pp. 1-5.

Reference con't.

[12] S. Aomumpai, K. Kondee, C. Prommak, and K. Kaemarungsi, "Optimal placement of reference nodes for wireless indoor positioning systems," 2014, pp. 1-6.

[13] F. Jin, K. Liu, H. Zhang, L. Feng, C. Chen, and W. Wu, "Towards Scalable Indoor Localization with Particle Filter and Wi-Fi Fingerprint," 2018, pp. 1-2.

[14] F. Jin, K. Liu, H. Zhang, J. K.-Y. Ng, S. Guo, V. C. S. Lee, and S. H. Son, "Toward Scalable and Robust Indoor Tracking: Design, Implementation, and Evaluation," *IEEE Internet of Things Journal*, vol. 7, no. 2, pp. 1192-1204, 2020.

[15] Y. Zhao, W.-C. Wong, T. Feng, and H. K. Garg, "Efficient and Scalable Calibration-Free Indoor Positioning Using Crowdsourced Data," *IEEE Internet of Things Journal*, vol. 7, no. 1, pp. 160-175, 2020.

[16] A. Islam, M. T. Hossan, M. Z. Chowdhury, and Y. M. Jang, "Design of an indoor positioning scheme using artificial intelligence algorithms," 2018, pp. 953-956.

[17] P. Bahl, and V. N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," IEEE, 2000, pp. 775-784 vol.2.

[18] M. Youssef, and A. Agrawala, "The Horus location determination system," *Wireless networks*, vol. 14, no. 3, pp. 357-374, 2007.

[19] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, "SpotFi: Decimeter Level Localization Using WiFi," Computer communication review, vol. 45, no. 4, pp. 269-282, 2015.

[20] I. Alshami, N. Ahmad, S. Sahibuddin, and F. Firdaus, "Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments," *Sensors* (*Basel*), vol. 17, no. 8, pp. 1789, 2017.

[21] C. Chen, C. Yan, H. Yi, L. Hung-Quoc, and K. J. R. Liu, "Achieving Centimeter-Accuracy Indoor Localization on WiFi Platforms: A Frequency Hopping Approach," *IEEE Internet of Things Journal*, vol. 4, no. 1, pp. 111-121, 2017.

[22] K. A. H. a. M. Y. O. Hashem, "DeepNar: Robust Time-based Sub-meter Indoor Localization using Deep Learning," in 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Como, Italy, 2020, pp. pp. 1-9.

Thank you