

Counter-example Guided Abstract Refinement for Verification of Neural Networks

Stefano Demarchi | Dario Guidotti

CPS Workshop 19/09/2022

Agenda

- Context
- Abstraction algorithms
- Refinement / CEGAR
- Evaluation
- Remarks

Neural Networks

Neural Networks (NNs) are widespread and «fashionable»

NNs provide fast classification and regression results

Many success stories in Natural Language Processing, Computer Vision, Control...

Neural Networks

 $Y = f_4(f_3(f_2(f_1(X))))$

NN Verification

- = Neural Network
- = Training sample
 - = Unsafe zone

NN Verification

Adversarial perturbation

- Minimal changes impact the classification
- Concerns for safety-critical applications
- Formal Verification for Input/Output specifications

Abstract Interpretation

Infeasible to run the NN on all inputs

Abstract Interpretation

Abstraction provides finite approximation of (potentially) infinite sets

NN abstraction – ReLU layers

NN abstraction – ReLU layers

Complete

Propagates the exact transformation of the input

If the input is **unstable** then we split

In the worst case the input set grows exponentially with the number of neurons

Over-approximate

Propagates an approximation of the input

If the input is **stable** we keep the exact transformation

The approximation introduces a new variable and 3 constraints for each neuron

Mixed algorithm

The over-approximation abstract area depends on the set bounds

Approximate all neurons **but** the one with the greatest area

Still approximate, but faster and more precise

CEGAR

Approximation refinement

- If the exact output violates the safety property we can identify the unsafe input
- Not the same with the approximate output
- If we find a counterexample we can prove that the property is not verified

CEGAR

Approximation refinement

We enhance the refinement measuring neuron relevance¹

Relevance is computed propagating the prediction backwards on samples from the output set

Measures the neurons contribution to the result

¹Montavon, G. et al – Layer-Wise Relevance Propagation: An Overview; Explanable AI, 2019

NeVer Tools

A suite of tools for the manipulation and verification of NNs

pyNeVer – baseline API

CoCoNet – Tool for NNs manipulation and conversion

NeVer 2 – Tool for NNs learning and verification

neuralverification.org | github.com/NeVerTools

Evaluation

Verification of ACAS-Xu properties

Classic verification benchmark

Properties expressed for never issuing a Clear-Of-Conflict command

All properties are known to be verified

Evaluation

PROPERTY	NETWORK	MIXED		CEGAR-PS		CEGAR-mR	
		TIME	VERIFIED	TIME	VERIFIED	TIME	VERIFIED
# 3	1_1	13	Т	10	3/10	9	9/10
	1_3	10	${ m T}$	14	6/10	10	0/10
	2_3	7	T	10	9/10	7	6/10
	4_3	15	\mathbf{T}	17	10/10	14	10/10
	5_1	6	Т	11	10/10	9	10/10
# 4	1_1	11	Т	10	0/10	9	0/10
	1_3	8	Т	16	0/10	11	0/10
	3_2	12	Т	12	10/10	12	10/10
	4_2	12	Т	11	10/10	12	10/10

Remarks

Explainability insights

We tried to enhance our refinement procedure

No clear improvement in results, but interesting insights

Unpredictability due to sampling

Working on better sampling/counterexample identification

