

# T4C: A Framework For Time-Series Clustering-As-A-Service

Alessandro Falcetta, and Manuel Roveri

Code & Paper

{alessandro.falcetta,manuel.roveri}@polimi.it

## TL;DR

Time-series clustering is hard; T4C is a Python framework which can automatically ingest and cluster time-series datasets, using various models/tools, presenting the results on a web dashboard.

## Background

• Time-series clustering is an unsupervised data mining technique whose goal is to organize time-series into groups based on their similarity;

### Introduction

• T4C is a Python framework being a general and user-friendly solution to offer "time-series clustering as-a-service".

POLITECNICO

**MILANO 1863** 

- Different methods for time-series clustering exist, according to the way in which they consider the input data (i.e., *shape* or *observation* based, *feature* based, *model-based*);
- Several distance measures can be used to give a quantifiable indicator on the similarity of two time-series;
- T4C includes all these aspects in a single framework.

- T4C can be used providing a JSON file containing a set of parameters and a time-series dataset. T4C will automatically cluster the time-series dataset, showing the results either through a web dashboard or a REST endpoint;
- T4C can also be served interactively, through a website.

T4C, which is released to the scientific community as an open-source project, has been applied with promising results to the COVID-19 pandemic spread in Italy.

| ecture            |                            |                        |                  |                    |                     |
|-------------------|----------------------------|------------------------|------------------|--------------------|---------------------|
| User's<br>machine | Cloud<br>Data<br>ingestion | Data<br>pre-processing | Data description | Data<br>clustering | Service<br>delivery |
| CSV<br>N time-    | ] Pandas                   | Missing                |                  |                    | Results             |



#### Results

- 1. Data on the daily "New cases" of Covid-19 have been taken for a large number of countries;
- 2. The time-series are clustered using T4C;
- 3. The results show how different countries can be grouped, according to the behaviour of the Covid-19 spread





| Cluster 1 | Cluster 2           | Cluster 3  |  |
|-----------|---------------------|------------|--|
| Argentina | Afghanistan         | Albania    |  |
| Brazil    | Andorra             | Algeria    |  |
| France    | Angola              | Armenia    |  |
| Germany   | Antigua and Barbuda | Australia  |  |
| India     | Bahamas             | Austria    |  |
| Italy     | Barbados            | Azerbaijan |  |
|           |                     |            |  |

#### Future works

The future works will encompass the use of new clustering models, the application on T4C on industrial use-cases, and the extension on different time-series tasks (e.g., classification).

#### Acknowledgments

The authors would like to thank Dr. Uriel Guadarrama Ramirez for his valuable help.