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1. Context

Neural networks are widely adopted in diverse fields and

applications. While they provide fast and useful results,

they have been proved to suffer from safety and reliability

issues.

�Neural Networks are functions organized in layers

�Connections between nodes represent linear transforma-

tions

�Nodes apply non-linear activation functions
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Figure 1: The ReLU activation function, corresponding to yj = max(0, zj)

2. Abstract analysis

Abstracting the input domains as sets we reason on

how the network transforms them, using exact and over-

approximated algorithms.

The problem of NN verification is to compute the output

reachable set and prove it does not intersect some unsafe

zone.

If the over-approximation invalidates the property, we can

try to refine the abstraction in order to mitigate the ap-

proximation error.
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Figure 2: An example of the approximate reachable set (green) violating the safety
property (red) while the exact reachable set (blue) is safe.

3. CEGAR

Exact algorithm. If the output reachable set lies

in the unsafe zone the property is violated. The

counter input set containing all possible inputs

in the input set that lead the neural network to

unsafe states is

C =

k⋃
i=1

(c, V, P i), P i 6= 0

Approximate algorithm. The approximation in-

troduces new variables and the inversion of the

output set is not possible. We define the abstract

counter output set (ACOS) the intersection be-

tween the output and the unsafe zone. We sample

ŷ from the ACOS and use a minimization prob-

lem for finding a x̂ in the input

x̂ = min
x
||ŷ − ν(x)||2

Relevance. If the search problem fails due to

non-convexity, we measure the relevance of neu-

rons enhancing it with the areas of approximate

ReLUs: the approximation is larger when the sets

are widespread.

Figure 3: An example of the measure of neuron relevance: tighter
bounds produce triangles with smaller areas (left).

4. Experiments and

Conclusions

ACAS-Xu benchmarks are a well-known case study in

avionics.

property network
MIXED CEGAR-PS CEGAR-mR

time verified time verified time verified

# 3

1 1 13 T 10 3/10 9 9/10

1 3 10 T 14 6/10 10 0/10

2 3 7 T 10 9/10 7 6/10

4 3 15 T 17 10/10 14 10/10

5 1 6 T 11 10/10 9 10/10

# 4

1 1 11 T 10 0/10 9 0/10

1 3 8 T 16 0/10 11 0/10

3 2 12 T 12 10/10 12 10/10

4 2 12 T 11 10/10 12 10/10

�The mixed algorithm only considers the approximation

areas

�CEGAR-PS computes the product of the relevances and

the areas

�CEGAR-mR only considers the relevance

The CEGAR algorithms do not clearly enhance

the results, but give us insight on how the neu-

rons behave and add a level of explainability to

the verification algorithm.
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