Model-driven Quality and
Resource Management for CPS

Marc Geilen, Twan Basten
in collaboration with Martijn Hendriks, Kees Goossens, and others from the
FitOptiVis & TRANSACT teams

Electronic Systems, Dept. Electrical Engineering,
Eindhoven University of Technology

m.c.w.geilen@tue.nl

Overview

e Component Interface Model for QRM
= 3 QRM use case
= Budget models
e The Quality and Resource Modeling Language
= language
= Tools

Use Case: Run-time Mapping on
Predictable Platform

e consider a streaming application composed from a set of
streaming components
e a compute platform supporting virtual platforms
» asetof reserved resources providing guaranteed
resource budgets

e find a suitable, minimal virtual platform that provides the
resources required to satisfy the application performance
requirements

e define appropriate budget abstractions

Virtual Execution Platform

e CompSoC Verintec platform
e composable / predictable
e strong virtualization

MEMSHO 128KiB VK VK

shared region 10KiB

e peripherals e peripheralg

n 1
n 1
n]
n 1
n 1
n 1
f :
i part. |
n 0 1
n 1
! linux H
n 1
n 1
n 1
n AR 1

node node node
MEMSHO0 TILEO TILE1 TILE2

your
laptop

A Processing Budget

A processing budget

part. .
(C,I) e NxR ' . .

VKERNEL

a task receives at least C processor MCycles in every m__
interval of I milliseconds e

A Processing Budget

A processing budget
(C,I) e NxR

a task receives at least C processor MCycles in every
interval of I milliseconds

Is the following true? (X means “is at least as good”)

(50, 100)=(100, 200)?

part.

VKERNEL

MEM1 128KiB

5.1

A Processing Budget

A = (50, 100)
B = (100, 200)

I Budget A I Budget B

250
200 Y
150 Ittt

100 I

50 ToO0D

0 100 200 300 400 5C

A Processing Budget

A = (50, 100)
B = (100, 200)

(Ch1, 1) X(Cy, Ip) if and only if
.[1 < _[2 and Lf-—jj . 01 > 02

6.1

Processing Budget Abstractions

A TDMA scheduler has

e aperiod of 100ms | L 0ms lHli/IC clos
e 10 slots of 1Mcycles each 100ms ’ Y

Processing Budget Abstractions

A TDMA scheduler has

e aperiod of 100ms ‘ " f;dc 1
e 10 slots of 1Mcycles each 100ms ms, ycles

What is the strongest budget that an allocation of slots 1 and 4 offers?

71

Processing Budget Abstractions

A TDMA scheduler has

e aperiod of 100ms T

|
e 10 slots of 1Mcycles each 100ms 10ms, 1MCycles

What is the strongest budget that an allocation of slots 1 and 4 offers?

 Thereis no single strongest!

(1,70), (2,100), (0.001, 60.01), .. .

7.2

Processing Budget Abstractions

A TDMA scheduler has

e aperiod of 100ms ‘ " &C 1
e 10slots of 1Mcycles each 100mms ms, ycles

 Thereis no single strongest!

(1,70), (2,100), (0.001, 60.01), . ..

e Pareto optimal trade-offs (between throughput and latency)

e budget abstractions may be defined and/or compared at different levels of
abstraction

Virtual Execution Platform

MEMSHO 128KiB
shared region 80KiB

MEM1 128KiB

VKERNEL

partition 0 partition 0 partition 0

part.
0

partition 1

partition 2
partition 3

partition 2
partition 3

partition 1

partition 2

partition 3

partition 1

red region 10KiB
linux) peripherals| i tile 0 | | peripherals b tile 1 | | peripheralg b tile 2
A A Y
AR node node node node
| MEMSHO TILEO TILE1 TILE2
1
your :: :
laptop :: :
n 1
"components":
"id" : "Task1",
"configurations":

"inputs":[{"raw_frames" : "30Hz"}, ...],

4 ":["processed_frames" : "30Hz"}, ...],
"parameters":[{"resolution" : "720p"}, ...],
"qualities":[{"framerate" : 30}, ...],
"required_budget”:

"'TILE": { "RISCV":

"unit" "_cydes"

"type" : "average_rate",
"value" : 100K
},-.. // other services from RISCV
1, ... // other resources from TILE
}, .. // other resources besides TILE

'i}r'\iﬁal_shte':[("IDMEM‘ :".../taskl.hex"}, ...]
}, . // other application configurations
1}, ... // other components
"compositions":

"App1 = Taskl => Task2",

<

Partially Ordered Qualities

All interface components (budgets, inputs/outputs, qualities) should,
mathematically speaking, be partial orders

e can be arranged in terms of better / worse
e including trade-offs

e redundant solutions eliminated at design-time

A partial order relation is

reflexive, equal properties always match

transitive, if x is better than y, and y is better than z, then x is better than z too
anti-symmetric, if different values are comparable, then one is the better one
and the other is worse

but different values need not be comparable

10

Types of Qualities

e non-numerical qualities
= E.g., Boolean types, “provides redundancy”: { true, false}

true=<false

11

Types of Qualities

e non-numerical qualities
= E.g., Boolean types, “provides redundancy”: { true, false}

true=<false

e Enumeration types (sets):
= E.g., modulation scheme

{16QAM, 64QAM, 256 QAM}

Types of Qualities

e non-numerical qualities
= E.g., Boolean types, “provides redundancy”: { true, false}

true=false

e Enumeration types (sets):
= E.g., modulation scheme

{16QAM, 64QAM, 256QAM}

e Partially ordered qualities

= allows x Ay and yAx for distinct, ‘incomparable’ values x and y
= allows one to require equality in producer-consumer constraints: < is
equality

11.2

Partially ordered qualities

can you define a partial order relation that prioritizes latency over power

consumption?

(ll,pl)j(lz,pg) if and only it ...

12

Partially ordered qualities

can you define a partial order relation that prioritizes latency over power

consumption?

(ll,pl)j(lz,pz) if and only it ...

(ll,pl)j(lz,pg) if and only if ll < l2 or l1 — l2 and P1 < P

121

Component Abstractions

e streaming applications represented by dataflow models

e (worst-case) performance (throughput, latency) can be determined from a
compositional max-plus algebraic model

e components can relate performance to processing budgets

e allows application components to be combined into an application

13

Set Points

e set points of a dataflow application component consist of

» binding of tasks to virtual processors (processing budgets)

= static-order schedules of the tasks on the virtual processors

o to make the performance predictable
e Use monotonic optimization techniques [1] to determine set points with trade-
off between performance and required budget

e design-time component model
e run-time creation of a suitable virtual platform
e may be refined with DMAs, memory allocations, ...

14

The QRML Language

[kar-uh-muh] a kind of chewy candy, commonly in small blocks, made
from sugar, butter, milk, etc.

The Quality and Resource Modelling Language

15

Examples from the Multi-
Source Streaming Case

w
(@]
C
-
0
1]
L7
S~
=
>
=~
vy

Ya3ms 501

XN

Down

scaler

Up
Context | Context SC8|EI’
Down

scaler

Context | Context

Down
scaler

Context | Context Overl ays

ERRT CPU mem

scaler

16

Defining Types

Examples

budget Bw integer

budget FrameRate integer
budget Computation integer

channel Video
hres: integer ordered by
vres: integer ordered by
rate: integer ordered by
ordered by a<-b if a hres--b hres a. vres--b. vres a. rate<-b. rate

budget Scaling
segs: integer
comp: Computation
ordered by element-wise

budget Scalers
streams: integer
scaling: Scaling

17

Defining Types

e Non quantitative properties:

budget Services subset of S1, s2, S3 ordered by subset

typedef Encryption boolean
channel Transport enumeration ts, mkv, mp4 unordered

e For composition budgets are added or subtracted.

budget Storage integer with addition a+tb a max b

18

Defining Partially Ordered Sets

How can we define a memory budget the requires a capacity and a type: EC

/non-ECC?

Defining Partially Ordered Sets

How can we define a memory budget the requires a capacity and a type: EC
/non-ECC?

19.1

Defining Components

provided
parameters qualities budget

component Fiber
provides Bw p bw p_bw

input =) output
component FaceRecognition '
input Image inp
output Id out
requires FaceIdentification faceIld

required budget

e interfaces: provides, requires, input, output,
quality, parameter

20

Hierarchical Components

component ExecutionPlatform
contains Fiber fiber
contains HWscaler hwScaler

provides Bw p bw from fiber .p bw
provides Scalers p_sc from hwScaler .p sc

e free composition

21

Alternative Choices

component HWScaler
provides Scalers p_sc streams scaling. comp scaling. segs

component SWScaler
provides Computation p cmp p_cmp

component HWorSWscaler
contains HWscaler hs or SWscaler ss

provides Scalers p_sc

constraint p_ sc hs p _sc
constraint p sc top, ss. p_cmp

e constraints are enforced if the component is selected
e top denotes avalue that is better than any other value
e bottomdenotes a value thatis worse than any other value

22

Constraints

ACl .o output to AC2.i
A.r runs on R.p

e horizontal composition introduces a constraint between output o and input ¢
using Pareto dominance
m “outputois ‘atleast as good’ as input 1”

0=1

e vertical composition constrains provided budget p and required budget r
= “provided budget p is ‘at least as good’ as required budget r”

pr

23

Parameters

parameter Mode mode
requires Power power

constraint mode ml power
constraint mode m2 power

e parameters are the controllable ‘knobs’ of components to select
= feasible set points

= optimal set points

24

Objectives

quality PowerConsumption pc
quality Torque t

e qualities identify the optimization objectives in a system
e determine optimal, feasible set points

25

Tools

e Xtext Domain-Specific Language tools
= domain model, syntax checking, validation, code
generation and transformations
e Visualization
= PlantUML component diagrams
= grmlvis
 Web-based modeling environment
= grml.org
e Optimization
= Conversion to constraint problem for the Z3
constraint solver

26

Transformation Engine

e rewrite QRML model with a rich, user-friendly syntax into QRML model using
only small core of syntax and a simple structure
= replace component classes by instances
= unfold hierarchical types
= rewrite complex ordering relations
|
e final modelis essentially a set of variables and constraints
e convert to a mathematical constraint problem
e translate the result back into terms of the original model

27

Constraint Solving

e model represented as a constraint program
e SMT (Satisfiability Modulo Theories) solver can flexibly apply a set of ‘theories’
and a set of strategies to solve the problem
= eg.,/3
e no native support for Pareto fronts, but exploration can often be done by
customized iteration of constraint programs

28

Conclusion

e Component Interface Model of QRM
= builds on partial order relations for composition
= expresses feasibility and multi-objective optimality
e QRML is a domain-specific language to build such models
= some visualization options
= translation to constraint program to check feasibility and find optimal set
points
e we will build some models in the tutorial session after the coffee break
e pleasegotohttps://qrml.org — login — Sign Up
e use an email address that you have access to for verification
e use the registration code: mwX5e9#x

29

