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Big data applications with 

heterogeneous data sources

FPGA-based architectures to 

accelerate selected kernels

● App designers are not FPGA experts

● Hardware accelerators require many 

optimizations

● Target nodes can have different 

characteristics

Improve applications’ results

Increase quality of accelerators

Increase designers’ productivity

Compilation Runtime

How to optimize big data applications on FPGA-based architectures?

Unified hardware generation flow

(high-level synthesis)

Generation of variants

Dynamic adaptation to variants

Virtualization of resources

Multi-node support

The EVEREST Project

H2020 Project – 10 partners, 6 countries

Project Coordinator: Christoph Hagleitner, IBM Research Europe

Scientific Coordinator:

Budget: ~5M€

Start date: October 1, 2020 (36+6 months)

🙋🏻‍
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EVEREST Approach

Big data applications with 

heterogeneous data sources

FPGA-based architectures to 

accelerate selected kernels

SDK

What are the relevant requirements for data, languages and applications?

How to design data-driven policies for computation, communication, and storage?

How to create FPGA accelerators and associated binaries?

How to manage the system at runtime?

How to evaluate the results?

How to disseminate and exploit the results?

CPU-based infrastructure

Two FPGA-based clusters

+

Open-source framework to 

support the optimization of 
selected workflow tasks

Three use cases
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EVEREST Partners

IBM Reseach Lab, Zurich (Switzerland)

Project administration, prototype of the target system
PI: Christoph Hagleitner

Politecnico di Milano (Italy)

Scientific coordination, high-level synthesis, flexible memory
managers, autotuning
PI: Christian Pilato

Università della Svizzera italiana (Switzerland)

Data security requirements and protection techniques
PI: Francesco Regazzoni

TU Dresden (Germany)

Domain-specific extensions, code optimizations and variants
PI: Jeronimo Castrillon

Centro Internazionale di Monitoraggio Ambientale (Italy)

Weather predictionmodels
PI: Antonio Parodi

IT4Innovations (CzechRepublic)

Exploitation leaders, large HPC infrastructure, workflow
libraries
PI: Katerina Slaninova

Virtual Open Systems (France)

Virtualization techniques, runtime extensions to manage
heterogeneous resources
PI: Michele Paolino

DufercoEnergia (Italy)

Application for predictionof renewable energies
PI: Lorenzo Pittaluga

Numtech (France)

Application for monitoring the air quality of industrial sites
PI: Fabien Brocheton

Sygic A/S (Slovakia)

Application for intelligent transportation in smart cities
PI: Radim Cmar
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Traffic modeling for intelligent transportation

EVEREST Use Cases

6

Weather prediction modelling 

(WRF)

Renewable energy production prediction

Air-quality monitoring of industrial sites

Accelerated computationally-intensive kernels Machine-learning kernels+

★ Improve quality of the predictions

★ Accelerate kernels to execute more tests

★ Improve the response time of predictions

★ Improve the overall performance of traffic simulation
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The Case of Computational Fluid Dynamics

Numerical simulations are becoming more and more popular for many 
applications
• Computational Fluid Dynamics requires to solve partial differential equations

• Inverse Helmholtz operator (“Helmholtz” for the friends) 
is parametric with respect to polynomial degree p

Final result is obtained by “small” contributions on independent data
• CFD kernel is composed of three high-level tensor operators (two contractions 

and one Hadamard product) repeated millions of times – good for spatial parallelism

• Each operator requires p2 + 2 ∙ p3 (double) elements as input and produces p3

(double) elements – 21.74 KB + 10.40 KB per element when p = 11

• Six tensors (p3 elements) to store intermediate results – additional 62.39 KB
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EVEREST Target System

● Disaggregated FPGAs directly attached to the 

network (64 FPGA instances)

● Low latency and high bandwidth system

● Separation between Shell and Role modules

● cFDK framework for system generation

● Cluster of PCIe-attached FPGAs (Alveo) with 

HBM architecture (up to 460 GB/s per board)

● Xilinx Vitis framework for HLS and system 

integration

● Support for the integration of custom HDL

● CPU-based infrastructure to execute end-to-end workflows, manage storage, and data transfers 

● Extended to support the offloading of tasks to FPGA servers

cloudFPGA FPGA-Accelerated HPC Cluster  

CPU Reference System  

Exploit spatial parallelism

High memory bandwidth

Different nodes to better match applications

Seamless support for multiple nodes

Limited FPGA resources (esp. memories)

Data-intensive (memory-bound) applications
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EVEREST System Development Kit (SDK)

(and more...)

Processing State

Collection of interoperable and open-source tools to create hardware/software 

systems that can adapt to the target system, the application workflow, and the 

data characteristics

Different input flows 

starting from different input languages

Support for multiple target boards

➢ Compilation framework based on MLIR to unify the input languages

➢ High-level synthesis and hardware generation flow to automatically create optimized architectures

➢ Creation of hardware and software variants to match architecture features

➢ Use of state-of-the-art frameworks and commercial toolchains for FPGA synthesis
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Challenges for HPC Architectures (i)

Challenge 1: Input languages and frameworks
• Application designers are usually not FPGA experts and may use high-level 

framework that are not supported by current HLS tools – how to talk with them?

Challenge 2: CPU-Host Communication Cost 
• FPGA logic requires the data on the board, but data transfers can be much more 

expensive than kernel computation – can we execute more than one point?

Challenge 3: Read/Write Burst Transactions
• We need to determine the proper size of the transactions to get the maximum 

performance – how to reorganize the data transfers and get the parameters?
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Challenges for HPC Architectures (ii)

Challenge 4: Full Bandwidth Utilization
• AXI interfaces may be large (e.g., 256 bits on the Alveo) – how to leverage them?

• HBM architectures have many channels - how to parallelize data transfers?

Challenge 5: Data Allocation
• Data must be placed in memory to maximize its utilization but also to enable efficient data 

transfers/computation – custom data layouts?

Challenge 6: Synthesis-Related Issues 
• FPGA devices are large but still not sufficient for hosting many kernels – how to trade-off 

optimizations and parallel instances?

• FPGA architectures may be different – separate platform agnostic and dependent parts?

• FPGA logic architectures are complex and may introduce performance degradation – how to 
"guide" the synthesis process?
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Hardware HPC (Memory) Architectures

What do we mean with memory architecture?

Additional issues:
• BRAM resources are limited

• Helmholtz operator requires >94 KB of local data
• If local storage is not optimized, the number of parallel kernels can be limited 

• Application-specific details can be used to optimize the data transfers

• In Helmholtz, one of the tensors is constant over all elements – how to match 
these details with platform characteristics?

• Better to transfer data for a “batch” of elements and then execute them in series –
how many? again, limited storage

Every hardware module that is responsible to 

provide data to the accelerator kernels
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Hardware Compilation Flow

Annotated C 
code / LLVM IR / 

MLIR

HLS 
(Vitis/Bambu)

Arch. Info

Mem. Gen. 
(Mnemosyne)

IP config.

System Integration
(Olympus)

DSL
Src-to-Src (MLIR)

Compiler+DSE

Securi ty/data 
requirementsMem. Info

Securi ty/data 
requirements

Memory 
access patternsIP requirements

Synthesis Tools

ML Framework

Possibility to target different 
architectures

Memory architecture is 
decoupled from kernel HLS

ch1

ch2

ch3

ch6

ch4

ch5
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VitisOlympus

CFDlang

CFDlang 

Compiler

C Kernel
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Sharing 
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Explore

Minimal C++  

CU Wrapper

HLS
Resource &  

Latency  

Estimates

Optimize

Optimized  

C++ CU

Host C++

System CFG

Mnemosyne v++

g++

Binary

0101 

001101 

010011

Bitstream

0101 

001101 

010011

Memory

Architecture

HDL

Port Info

Alveo FPGA

PCIe

Host CPU

Design Space Exploration

Platform  

Specification

DSL-to-C C-to-System System-to-Bitstream Execution

From DSL to Bitstream – Focus on Memory

PLM optimization 
(local storage)

Optimization of 
data movements
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PLM Customization for Heterogeneous SoCs

High-Level Synthesis (HLS) to create the accelerator logic

• Definition of memory-related parameters 
(e.g., number of process interfaces)

Generation of specialized PLMs

• Technology-related optimizations 

• Possibility of system-level optimizations 
across accelerators

Accelerator Tile

DMA

Ctrl

Load

Compute 1

Store

Compute nk
e
rn

e
l(
)

Private Local Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
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45

6

…

1 2

in
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Accelerator Logic

Memory Library
PLM 

Generation
High-Level 
Synthesis

Data 
Structures

High-Level 
Description 

(C/C++/SystemC)
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Reuse What is not Used

Generally, we use one PLM unit (possibly composed of many banks) for 
each data structure (array)

“Two data structures are compatible if they can be 
allocated to the same PLM unit (memory IPs)”

A common case: accelerator kernels never executed at the same time
• Possible only at system-level, when integrating the components

• Optimizations of accelerator logic and memory subsystem are independent

Reuse the same memory IPs 

for several data structures
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Memory Compatibility Graph (MCG)

Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data 

footprint (after data allocation)

• Each edge represents compatibility between the two data structures 

• Can be automatically extracted from the MLIR-based compiler flow
• Variant exploration to achieve the "best solutions"

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the 

data structures are compatible and 

can use the same memory IPs

b) Memory-interface compatibility: 

the ports are never accessed at the 
same time and the data structures 

can stay in the same memory IP
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Clique Definition

“A clique is a subset of the vertices of the memory 
compatibility graph such that every two vertices are 

connected by an edge”

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

ab

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

We need two distinct configurations!
{A0,B0} and {A1} or {A1,B0} and {A0}? 

a

A clique represents a set of 

data structures that can 

share the same memory IPs
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PLM Controller Generation

A lightweight PLM controller is created for each compatibility set 
(clique) based on the bank configuration

• Accelerator logic is not aware of the actual memory organization

• Array offsets need to be translated into proper memory addresses

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom logic with negligible overhead, especially when 

the number of banks and their size is a power of two
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Creation of Parallel Architectures

Bram

Ctrl
PLM0 ACC0

Ctrl

ctrl
PLM0

Ctrl

PLMm-1

…

ACC0

ctrl

Batch

Bram

Ctrl

A[MSBs]

PLM0

Ctrl

PLMm-1

…

ACCk-1

ctrl

ACC0

ctrl

A[MSBs]

…

Bram

Ctrl

K. F. A. Friebel, S. Soldavini, G. Hempel, C. Pilato, J. Castrillon. "From Domain-Specific Languages to Memory-Optimized Accelerators for Fluid 

Dynamics" HPCFPGA’21
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Olympus – Automated System-Level Integration

Complete hardware architecture generation flow from high-level 
specification

Platform-specific description
• HBM-based Xilinx Alveo

• IBM CloudFPGA

• …

Host code generation
• Based on platform libraries

for the specific target

Possibility to use alternative HLS 
tools/HDL generators
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Olympus – System generation flow

Determines the system-level architectures based on:
• Algorithm parallelism

• Characteristics of the target platform(s)

• Interfaces of the modules (HLS tools)

Produces
• Synthesizable C++ code that includes:

• Accelerators and PLM generated with HLS

• Communication modules to match interfaces

• Standard AXI interfaces to the system (either cloudFPGA SHELL or HBM channels)

• May include “intelligent” policies to coordinate (or protect) data transfers

• System configuration file to create the overall architecture
• Support for multiple computing units executing in parallel

• Interfacing with Xilinx HLS and synthesis tools
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From MLIR to System Architecture

Automatic integration of memory optimizations for high-performance 
data transfers, such as:
• Double buffering to hide latency of host-FPGA data transfers

• Bus optimization (and data interleaving) for maximizing bandwidth (e.g., 256-bit AXI 
channels) – algorithms for efficient data layout on the bus

• Dataflow execution model to enable kernel pipelining – automatic (pre-HLS) code 
transformations

Double buffering Bus optimization Dataflow
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Results on HBM FPGA

Best performance: 103 GOPS
(118x faster than our "starting point")

Results are 6x better than Intel ones 

[optimized, vectorized implementation] 
(~25x more energy efficient)

Possibility of integrating custom 

data formats and configure memories 
and data transfers accordingly S. Soldavini, K. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillón, C. Pilato:. "Automatic Creation of High-Bandwidth 

Memory Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics" TRETS’22
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About Me – Stephanie Soldavini
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• BS & MS in Computer Engineering from Rochester Institute of 
Technology (2014-2019)

• PhD Student at Politecnico di Milano (2020-Now)
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Problem
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• Productivity: Application designers usually do not have the necessary 
hardware design knowledge to create efficient hardware architectures

• Performance: Fine-tuned hardware descriptions are required to 
efficiently coordinate data transfers and execution 

https://tinyurl.com/CPS2022olympus



Target Boards: 
Alveo Data Center Accelerator Cards with HBM
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Olympus Flow Diagram
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Inputs: C HLS Kernel

Tutorial: Olympus - Sep 22, 202229

• C code of application kernel to 
be accelerated

• Standard C array interfaces

input/kernel_body.cpp



Inputs: JSON Kernel Specification
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• Format derived from the JSON required 
for the Vitis RTL Blackbox flow1

• Required info:
• c_function_name

• the name of the kernel function AND filename 
(cpp & h)

• param_type
• “mm” : memory mapped C arrays
• “stream” : Xilinx hls::stream<> 

• c_parameters
• Details on each port interface (must be in the 

same order as in the C source
• c_name : Name of the array
• c_type : Data type of a single element
• c_port_direction : in, out, or inout
• depth : Number of elements in the array

1 https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/JSON-File-for-RTL-Blackbox

input/helmholtz.json

https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/JSON-File-for-RTL-Blackbox


Makefile
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• KERNEL_DIR
• Directory where the kernel 

HLS sources are

• KERNEL_JSON
• The JSON spec file path

• RING_BUF
• The degree of ring buffering

• BUS_WIDTH
• The bitwidth of the bus to global memory

• STREAMS
• Whether or not to use a dataflow 

streaming architecture
• 1=dataflow, 0=not dataflow

• N_CU
• Number of CUs to instantiate in the FPGA



Test Kernel: Inverse Helmholtz
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• Tensor operator commonly used in computational fluid 
dynamics (CFD) applications

• Implemented in C as 7 loop nests of depth 3-4
• input/kernel_body.cpp



Basic Implementation
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• make olympus
• Generate the code (default values in Makefile yield basic implementation)
• Sources: ~/alveo_tests/helmholtz_autogen/RB1_BW64_S0-student/krnl_helm/CLEAN/

• src/ : kernel sources, CU.cpp is the generated Compute Unit wrapper
• host/ : host sources

• HostImpl.gen.cpp: Implementation of driver functions (moving data to global mem, invoking CU)
• HostSampleTop.gen.cpp: A sample test bench main file

• make chost chw POINTS=16 run
• Build the sw_emu versions of the host and hardware and run with 16 iterations

• make hls TARGET=hw
• Run HLS



source /tools/Xilinx/Vitis/2021.1/settings64.sh

3rd-to-last line of "make hls" output: vitis_analyzer [path]/[kernel name].xo.compile_summary

Basic - Results
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Ping Pong Buffers
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• make olympus RING_BUF=2
• RING_BUF sets the degree of ring buffering, 2 => ping pong

• Sources: ~/alveo_tests/helmholtz_autogen/RB2_BW64_S0-student/krnl_helm/CLEAN/

• make chost chw RING_BUF=2 POINTS=16 run
• Build the sw_emu versions of the host and hardware and run with 16 iterations

• make hls RING_BUF=2 TARGET=hw
• Run HLS

HBM0

HBM0

CU0

HBM0

HBM0

CU0

HBM0

HBM0

CU0HBM1

HBM1

CU0

Basic Opt im ized

HBM0

HBM0

CU0

HBM0

HBM0

CU0

HBM0

HBM0

CU0HBM1

HBM1

CU0

Basic Opt im ized



Ping Pong Buffers - Results
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Now:



Wide Bus
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• make olympus RING_BUF=2 BUS_WIDTH=256
• BUS_WIDTH sets the width of the bus to global memory. 256/sizeof(double) => 4 

"lanes"
• Sources: ~/alveo_tests/helmholtz_autogen/RB2_BW256_S0-student/krnl_helm/CLEAN/

• make chost chw RING_BUF=2 BUS_WIDTH=256 POINTS=16 run
• Build the sw_emu versions of the host and hardware and run with 16 iterations

• make hls RING_BUF=2 BUS_WIDTH=256 TARGET=hw
• Run HLS



Wide Bus - Results
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Previous:

Now:



Streaming (1 compute)
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• make olympus RING_BUF=2 BUS_WIDTH=256 STREAMS=1

• STREAMS=1 turns on the HLS dataflow pragma and uses the hls::stream data type

• Sources: ~/alveo_tests/helmholtz_autogen/RB2_BW256_S1-student/krnl_helm/CLEAN/

• make chost chw RING_BUF=2 BUS_WIDTH=256 STREAMS=1 POINTS=16 run

• Build the sw_emu versions of the host and hardware and run with 16 iterations

• make hls RING_BUF=2 BUS_WIDTH=256 STREAMS=1 TARGET=hw

• Run HLS



Streaming (1 compute) - Results
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Previous "Compute" Latency: 49659
Previous Iteration Latency: 54077

Previous:

Now:



Streaming (1 compute) - Results
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• Same commands as before:
• make olympus RING_BUF=2 BUS_WIDTH=256 STREAMS=1

• Sources: ~/alveo_tests/helmholtz_autogen/RB2_BW256_S1-student/krnl_helm/DF/

• make chost chw RING_BUF=2 BUS_WIDTH=256 STREAMS=1 POINTS=16 run
• make hls RING_BUF=2 BUS_WIDTH=256 STREAMS=1 TARGET=hw

Streaming (multi compute)
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• Multi compute is not controlled by Olympus, but 
using the INLINE pragma any submodules in the 
original HLS kernel will be used in the pipeline

• Edit the Makefile:
• KERNEL_BODY ?= kernel_body_df
• KERNEL_MODEL ?= kernel_body_sw
• KERNEL_JSON ?= input/helmholtz_df.json
• TEST ?= DF



Streaming (multi compute) - Results
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...

...

Previous Dataflow Interval: 13877

Previous:

Now:



Streaming (multi compute) - Results
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Conclusions

Data management optimizations are becoming the key for the creation 
of efficient FPGA architectures (… more than pure kernel optimizations)

HLS is now used not only to create accelerator kernels but also to 
generate the system-level architecture
• Portable solutions across multiple target platforms

Novel HBM architectures offer high bandwidth (that’s why they are called 
high-bandwidth memory architectures… 😊︎) but their design is complex:
• Necessary to match application requirements and technology characteristics

• We propose an MLIR-based compilation flow that directly interfaces with
commercial HLS tools

Tutorial: Olympus - Sep 22, 202245



Thank you!

STEPHANIE SOLDAVINI

PhD Student, Politecnico di Milano

stephanie.soldavini@polimi.it

CHRISTIAN PILATO

EVEREST Scientific Coordinator

Assistant Professor, Politecnico di Milano

christian.pilato@polimi.it



This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269


