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Swarm intelligence

Dumb parts, properly connected 
into a swarm, yield smart results.

(Kevin Kelly)

Ant trail, © pixabay
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Swarm intelligence

But how to connect the parts properly?

• Social insects, bacteria and living organism do it

Bee swarm, © pixabay
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Swarm intelligence

Is a mindset rather than a technology

Bottom-up approach to design and optimize distributed systems

Using resilient, self-organized techniques

Slime mold, © pixabay
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Swarm intelligence in nature

Coordinated and purposeful navigation in animal societies

Individuals only rely on local information about neighbors and environment

Thousands of individuals can create a collective behavior without a leader

Ant trail, © pexels
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Emergent collective behavior in nature

Fish schooling, © pexels Bird flocking, © pixabay

Movement decisions are based on locally available information

• distance, perceived speed and movement direction of neighbors



Jennifer Simonjan 7

Swarm intelligence properties

Act in a coordinated way without the presence of an (external) controller

Scalable
operate under a wide range of group sizes

Robust
ability to compensate for failures

Flexible
adapt to changes in the environment

Self-organized
solution paths are emergent rather than predefined

Source: www.nextnature.net

http://www.nextnature.net/
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Swarm intelligence design

How can we define individual behavior and local rules to achieve the desired 
collective behavior? 

copy understand use

• difficult to predict collective behavior 
from individual rules

• the behavior of a single swarm member 
does not tell us much about the group 
behavior

• small changes in rules lead to different 
group behavior
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Simple rules can also fail sometimes

Ants trapped in a 
death spiral

Source: Feed Your Curiousity- youtube.com/watch?v=CJ2HMoznzEo
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From natural swarm behaviors to artificial systems

Ant colony optimization 

(Dorigo, 1992) 

Source: Monmarché 2010

Applications

Dynamic factory scheduling, supply chain optimization, 
truck routing, routing in communication networks, …

Particle swarm optimization 

(Kennedy & Eberhart, 1995)

Applications

Energy-storage optimization, antenna design, 
data clustering, controlling robot swarms, …

Source: 
https://doi.org/10.1371/journal.pone.0188815.g006

https://doi.org/10.1371/journal.pone.0188815.g006
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Ant colony optimization (ACO) [1]

Nature-inspired metaheuristic modeled on the actions of an ant colony

• based on the foraging behavior of ants for seeking a path between their 
colony and a food source

[1] Dorigo, “Optimization, learning and natural algorithms”, Doctoral dissertation, 1992.

[2] Al-Otaiby et al., AntTrust: An Ant-Inspired Trust Management System for Peer-to-Peer Networks, Sensors, 2022.

Source: [2]
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Particle swarm optimization (PSO) [1]

Population based stochastic 
optimization inspired by bird 
flocking and fish schooling

[1] Eberhart, Russell, and James Kennedy. "Particle swarm optimization.“, IEEE IJCNN, 1995.

Source: blog.stratio.com/swarm-intelligence-metaheuristics-part-2-particle-swarm-optimization

https://blog.stratio.com/swarm-intelligence-metaheuristics-part-2-particle-swarm-optimization/
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Swarm intelligence in CPS and robotics

drone swarms for target 
search or delivery

pattern formation 
(e.g., entertainment, 

environmental monitoring)

collective exploration of 
unknown territory 

(terrestrial, aerial, aquatic)

collective transport of 
heavy items

synchronization

sorting or clustering robots
(e.g., warehouses, industrial plants)
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UAV swarm synchronization and pattern formation

Swarmalators demonstration

• form five different types of space-time patterns 
which are not known in advance but emerge over 
time in a self-organizing manner

• Karl Popper doctoral school on Networked and 
Autonomous Aerial Vehicles at University of 
Klagenfurt

• Original model: O’Keeffe, Hong, Strogatz, 
Oscillators that sync and swarm, Nature 
Communications, 2017

Source: Karl Popper doctoral school on Networked Autonomous Aerial Vehicles, 
Drone hall, University of Klagenfurt
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Robotic swarms for autonomous target search

Autonomous drones and 
rovers for target 
oriented applications

• H2020 CPSwarm at Lakeside Labs, 
Klagenfurt, Austria

• Further information: 
www.cpswarm.eu

Source: H2020 CPSwarm, Lakeside Labs

http://www.cpswarm.eu/
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UAV swarms for search and resuce applications

Disaster response 
support with drones

• support rescue teams with UAV 
swarms

• search targets

• stream images to the rescue teams

• deliver goods and care packets 

Source: University Klagenfurt & Lakeside Labs
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Current swarm projects at Lakeside Labs
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Bugwright2

Inspection and 3D reconstruction of large ships with teams 
of aerial robots, underwater robots, and magnetic crawlers
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Bugwrigth2 - Project Goals

Autonomous outer hull service

1. Precise navigation on large low-textured structures

2. Heterogeneous multi-robot inspection and cleaning
3 MAVs, 3 AUVs, 4 crawlers

4. Cross-domain autonomous operation and inspection
above water and underwater

5. Advanced inspection technologies
highly precise detection and localization of defects

6. Remote inspection through virtual-reality

www.blueye.no

www.roboplanet.fr

www.abcnews.go.com/
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Bugwright2: Lakeside Labs Mission

• Swarm of drones to search defects with low resolution at large distance

• On defect detection, go closer to inspect with high resolution

• ship hull is mapped on a depth grid

• drones fly at two distances to execute the mission (2.5D space)

Level 1
Level 2
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Bugwright2: Partitioned TSP Algorithm

Source: Ship hull inspection simulation in Gazebo, Lakeside Labs

Dividing the problem into a set 
of Traveling Salesman Problems 

• considering prior information 

• partitioning into connected sub-
areas of similar size via DARP [1]

• re-computing paths online when 
new information is disclosed

• How to perform the task without 
any prior knowledge?

[1] A. Kapoutsis et al., “DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning,” J Intell Robot Syst, 2017.
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Excursus: Principle of flocking

Three simple rules to achieve 
flocking in swarms [1]

1. Repulsion

2. Alignment

3. Cohesion

Source: Flocking simulation in Netlogo, Lakeside Labs

[1] Reynolds, Craig W. "Flocks, herds and schools: A distributed behavioral model.“, ACM SIGGRAPH, 1987.
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Excursus: Flocking in formation

Apply additional rules on how agents position themselves in regard of their 
neighbors to achieve certain formations

Line

Grid Ring
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Bugwright2: Flocking for Autonomous Hull Inspection

Stay together in a flock to 
inspect the ship hull 

• sweep the unknown area in a line 
formation [1]

• no a-priori knowledge or planning 
required

• task division to perform close-up 
inspection

Source: Ship hull inspection simulation in MESA, Lakeside Labs

[1] Vásárhelyi et al. "Outdoor flocking and formation flight with autonomous aerial robots." IEEE IROS, 2014.
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SWILT (Swarm intelligence in industry 4.0)

Scheduling in production is a typical problem coming with the increased 
complexity in industry 4.0 components

Main issues 

• given constraints 

• global objective in production plants

high mixture of product diversity together with historical growth of 
the industrial plant leads to an NP-hard problem of the WiP flow
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SWILT

Existing optimization approaches exploit linear optimization methods which 

• can only be used on a subset of the plant (with similar requirements) 

• do not consider the entire system behavior

• have very long calculation times

• do not exploit the optimization potential

SO FAR: no optimal solution can be 
generated in polynomial time!
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SWILT Challenges

1.500 products, 150 process classes, 10.000 lots

• What should be modeled as agent and what is the 
right level of abstraction?

• How to deal with inhomogeneities among entities?

• How to implement swarm communication 
paradigms in the setting of a production plant?

• How to implement a solution on top of a working 
environment?

• How to validate the approach?

Source: Infineon Technologies AG
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SWILT (Swarm intelligence in industry 4.0)

Model each WiP step as autonomous swarm agent 
(e.g., machines, products, queues)

Establish an entirely new concept to consider 
inter-swarm activities

• behavior and communication between 

• different swarms 

• swarms and humans

• swarms and central management units



Jennifer Simonjan 29

SWILT Swarm Algorithms
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SWILT: Ant algorihtm for scheduling

P1 P2

FIFO
Duration

Pheromone
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SWILT: Hormone algorihtm for dispatching

P1 P2 P3

Need red
lots

Hormone
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SWILT: Netlogo simulation environment
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MCUAS – Military Counter Unmanned Aerial Systems

Developing defense strategies against 
attacking UAV swarms

• appearing in a swarm, autonomous 
drones detect, pursue and attack 
targets autonomously

• dynamics should not be 
underestimated 

Source: Andy Dean Photography
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MCUAS - defense strategies

What can we do to defend against attacking drone swarms?

• GNSS jamming or spoofing

• exploiting physical force against the attackers 

• catch nets, lasers, trained birds, ballistic cannons, …

• trying to hide or protect the target area

• use a defender swarm (swarm against swarm)

• use defender UAVs to mislead the attackers from the target 
(induce drones)
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MCUAS – Inducing drones to mislead attacking swarms

KPIs: number of UAVs, how long its possible to keep the attackers away, how fast is the defending swarm…

A few drones (e.g., three) are used to mislead an 
attacking swarm from the target.

The drones infiltrate the attacking swarm with the 
intention to either buy time or to mislead them. 
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MCUAS - Swarm algorithms for attack

As a starting point, we assume the attacking swarm to search and attack a 
specific target via target-oriented swarm algorithms

[1] S. Mirjalili et al., “Grey wolf optimizer,”Advances in engineering software, 2014.

[2] S. Li et al., “Slime mould algorithm: A new method for stochastic optimization,”FutureGeneration Computer Systems, 2020.

[3] C. Muro et al., “ Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations“, Behavioural processes, 2011.

[4] N.Edwards,“Physarum polycephalum essayant de sortir de sa boıte,” 2020. 

1. Grey Wolf Optimizer (GWO) [1] 2. Slime Mould Algorithm (SMA) [2]

Grey wolf hunting behavior [3]
Physarum Polycephalum [4]
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MCUAS – Defense 

First attempt: use a similar strategy for the defense as is used for the attack

1. Inject false information 

2. Move with the attacking swarm, distracting it gradually away from the 

target
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MCUAS – Visualization of GWO defense

Target

Omega wolves

Leader wolves

Defender drones

No defenders One defender
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MCUAS – Visualization of GWO and SMA defense

Three defenders (GWO) Five defenders (SMA)
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MCUAS – Defense 

• Generalized defenders working against a group of different attack algorithms

1. Machine learning

• RL-based attackers & defenders

• communication vs. physical defense
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Swarm Intelligence – Emerging topics

Lack of a formal definition of robustness

• “simple” robustness observations such as scalability 

• descriptive characteristic without formally defined measures

Lack of end-to-end swarm methodology

• simulation tools deal with two levels of abstraction: 

1. whole swarm from a high level of abstraction (MESA and Netlogo) 

2. physical simulation of the swarm (GAZEBO and AirSim)

• no tools integrating both aspects

More exploration and demonstrations of swarm intelligence for industry 
applications
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