Deep Learning Tools &
Frameworks

Danilo Pau
Advanced System Technology

Agrate Brianza

K ' l life.augmented

Many Deep Learning Frameworks

Facebook
Lasagne

life.augmented

DL Framework Popularity (Oct.17)

TensorFlow dominates the field with the largest active community:
« It can be used as a back-end in Keras and Sonnet
* Pros: general-purpose deep learning framework, flexible interface, good-looking computational graph
visualizations, and Google’s significant developer and community resources.
Keras is the most popular front-end for deep learning:
* Used as a front-end for TensorFlow, Theano, MXNet, CNTK, or deeplearning4j.
» Pros: simplicity, ease-of-use, allowing fast protoyping at the cost of some of the flexibility and control that
comes from working directly with a framework.
Caffe has yet to be replaced by Caffe2:

« Caffe2 is a more lightweight, modular, and scalable version of Caffe that includes recurrent neural networks.

« Caffe and Caffe2 are separate repos, so data scientists can continue to use the orginial Caffe.

* However, there are migration tools such as Caffe Translator that provide a means of using Caffe2 to drive existing Caffe
models.

Theano continues to hold a top spot even without large industry support

Sonnet (Deepmind 2017) is the fastest growing library
» a high-level object oriented library built on top of TensorFlow. +272% Q3’17vs Q2’17 for Google Search.
« DeepMind has a focus on Atrtificial general Intelligence and Sonnet can help a user build on top of their specific Al ideas and

m research.

life.augmented

https://github.com/caffe2/caffe2/blob/master/caffe2/python/caffe_translator.py

GitHub DL Frameworks Aggregated Popularity
(Oct.2017)

Aggregate popularity (30@econtrib + 20eissues + 3¢forks + lestars)ele-3

#1: 377.51 | tensorflow/tensorflow Popularity (%)

#2: 174.15 1R fchollet/keras e ——

#3: 143.84 1 BVLC/caffe e 2 2 % v 26 DI

#4: 128.26 N dmlc/mxnet 4% ——

#: 72.85 IR Theano/Theano Paddle 29%

#: 69.32 W Microsoft/CNTK \\

#7: 67.30 deeplearning4j/deeplearning4j o ——

#: 61.54 |} baidu/paddle CNTK

#9: 54.07 | pytorch/pytorch >

#10: 29.65 | pfnet/chainer Theano Keras
6% 13%

#11: 29.35 |} torch/torch7

#12: 29.33 | NVIDIA/DIGITS oo Cate

#13: 28.42) tflearn/tflearn =

#14: 28.09 l caffe2/caffe2 * = DL Frameworks Callouts with blu line are supported by ST

#15: 21.41 davisking/dlib Automatic NN Mapping Tool

https://twitter.com/fchollet/status/915366704401719296

Lys

life.augmented

https://blog.thedataincubator.com/2017/10/ranking-popular-deep-learning-libraries-for-data-science/

DL Framework Popularity (Oct.17)

DL Framework Overall Github Stack Overflow Google Results

10.87 4.25 4.37 2.24
1.93 0.61 0.83 0.48
1.86 1.00 0.30 0.55
0.76 -0.16 0.36 0.55
0.48 -0.20 -0.30 0.98
0.43 -0.33 -0.36 1.12
0.10 0.12 -0.31 0.28
0.01 -0.15 -0.01 0.17
-0.02 0.10 -0.28 0.17

dlib -0.60 -0.40 -0.22 0.02
caffe2 -0.67 -0.27 -0.36 -0.04
chainer -0.70 -0.40 -0.23 -0.07

paddlepaddle -0.83 -0.27 -0.37 -0.20

-0.89 -0.06 -0.32 -0.51

-1.11 -0.38 -0.29 -0.44
bigdl -1.13 -0.46 -0.37 -0.30
dynet -1.25 -0.47 -0.37 -0.42

apache singa -1.34 -0.50 -0.37 -0.47

nvidia digits -1.39 -0.41 -0.35 -0.64
matconvnet -1.41 -0.49 -0.35 -0.58

tflearn -1.45 -0.23 -0.28 -0.94
Ly

nervana neon -1.65 -0.39 -0.37 -0.89
opennn -1.97 -0.53 -0.37 -1.07

[

pytorch
sonnet

torch

2
3
4
)
6
7
te]
9

life.augmented

Interoperability wmm

* https://onnx.ai/

aws e Microsoft

VWhat is ONNX?

ONNX is a open format to represent deep learning models. AMDA arm NVIDIA
With ONNX, Al developers can more easily move models

between state-of-the-art tools and choose the combination _"Ap HUAWEI intel)'

that is best for them. ONNX is developed and supported by) -

a community of partners. ;D ﬂé‘%ﬁ?&'{-ﬁg QUALCW

Lys

life.augmented

Interoperabllity

* https://www.khronos.org/nnef

Before NNEF - NN Training and Inferencing Fragmentation

S Caffe? +
Caffe et OO NN Authoring Framework 1 Inference Engine 1
uI, " E”N"’“’-i-K NN Authoring Framework 2 Inference Engine 2
torc
biaans NN Authoring Framework 3 ey Tl Mool 5 ot 56 Inference Engine 3
at Every Accelerator

With NNEF- NN Training and Inferencing Interoperability

S Caffe? y NN Authoring Framework 1 Inference Engine 1
TensorfFlow
Caffe = NN Authoring Framework 2 >} NNEF < Inference Engine 2
o

I orch CNTK NN Authoring Framework 3 Inference Engine 3
theano Optimization and processing tools

Lys

life.augmented

https://www.khronos.org/nnef

Keras (2017

Deep Learning Frameworks

60,000 1 A
50,000 -
g
8 40,000
& 30,000
]
g 20,000 -
o -
— s Google's - Microsoft - Facebook - Deeplearningd) Theano Facebook -
- = with Keras TensorFlow CNTK Torch (DL4)) Caffe 2
‘ ' ’ https://www.cio.com/article/3193689/artificial-intelligence/which-deep-learning-network-is-best-for-you.html

life.augmented

Keras mmm

- A Python based high-level neural networks API

 Designed to be minimalistic & straight forward yet extensive (e.g. Lamba
layers)

* Originally built as a wrapper around Theano.
» But now also work on top of TensorFlow or CNTK.

» The focus Is making able the developers for prototyping in a fairly quick
way with proprietary custom layers.

Lys

life.augmented

Keras

> Supports

 Feed-Forward, Convolutional and Recurrent Neural Networks,

« Reinforcement learning (maximize some notion of cumulative reward)

* Linear and deep wide models

* Why to use Keras?

« User friendliness: Simple to get started, simple to keep going, yet deep enough to make

some serious complex models.

« Modularity: Highly modular.
« Easy extensibility: Easy to expand and add custom definitions.

« Work with Python: Written python no new training and syntax knowledge required.

Lys

life.augmented

Coverage of Keras

®
Convolution Posling Convolution Poaling Fully Fully Output Predictions A
. OUtpUtS Connected Connected
inputs
L L — o= dog (0.01) l ; A I
I L I'- ﬁ;:t)é??n; 34)
- HHHH e l!_— bird (0.02)
- S SO ¢ v = | O e < e -
input layer hidden layer output layer
Feed forward neural network Convolutional neural network Recurrent neural network
internal state “Nreward
x, Output Units
environment
Hidden Layers
. . Dense
o) ' y Embeddings
=) .. :::r;:qt?-;:nmmp (XXX XX Sparse Features
‘ ‘ . . . , ‘ decountrate Wide & Deep Models
20 -10 10 20 30 40 50 60 K
observation d wid del
i . . D i
Linear models Reinforcement learning eep and wide models
node —» 2o ° :
° o |-
/
) ‘ 4— terminal node ‘ AN .
— _ ; M no N
e ot o
Support Vector Machines

majority vote of terminal nodes

Random forests

Lys

life.augmented

Keras

* Link: https://keras.io/ (general information, documentation)

* Installation instructions: https://keras.io/#installation (OS related)

- Sample codes: https://github.com/fchollet/keras (openly available)

- A very nice link for starters:
https://machinelearningmastery.com/tutorial-first-neural-network-
python-keras/ (if you are new on Keras, this is highly recommended)

Lys

ife.augmented

https://keras.io/
https://keras.io/#installation
https://github.com/fchollet/keras
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/

Keras: General Design Principals

General Idea in Keras is that it is based on layers and their inputs/outputs
* Prepare your inputs and output tensors
* Create first layer to handle the input tensor
 Create output layer to handle targets

» Build virtually any model layers you like in between

Ly

ife.augmented

Keras

Keras has a number of built-in layers. Notable examples include

* Regular Dense layer: Fully connected, MLP type
Syntax is

keras.layers.core.Dense(output_dim, init = , activation = , weights = None,
b_regularizer = None, W_regularizer = None, activity_reqgularizer = None,

W _constraint = None, b_constraint = None, input_dim = None)

- 1D Convolutional layer
Syntax is

keras.layers.convolutional.Convolution1D(nb_filter, filter_length, init = , activation =)
weights = None, border_mode = , Input_dim = None

W _reqgularizer = None, b_regularizer = None, W_constraint = None
activity_regularizer = None, b_constraint = None,

‘W keranal_size=1)

life.augmented

Keras Architecture

- 2D Convolutional layer
Syntax is

keras.layers.convolutional.Convolution2D(nb_filter, filter_length, init = , activation = ,
weights = None, border_mode = , Input_dim = None,
W_reqgularizer = None, b_regularizer = None, W_constraint = None
activity_regularizer = None, b_constraint = None,
kernel_size=(1,1))

* Recurrent layers, LSTM, GRU, etc.

Syntax is

keras.layers.recurrent. GRU(output_dim, nb_filter, filter_length, init = ,inner_init = ,
activation = ' inner_activation =’ ' statefull = False,
go_backward = False, input_dim = None, input_length = None)

Lys

life.augmented

Keras Architecture

Some other types of supported layer includes

 Dropout —— R

max pooling

20|30

* Noise 12(201 30

112| 37
0
81121 2|0 /
. / 34|70 37T average pooling
: POOIIng 112100} 25| 12 13| 8
79| 20

- Normalizaton ——

- Embedding and many more

Keras Activations

» Almost all famous activations are available in Keras and can be added
as an activation function to the layer. Such as
« Sigmoid
* Tanh
* RelLu
e Softmax
« Softplus
e Hard_sigmoid
e Linear

« Advance activations as separate layers, include, LeakyRelu, PRelu,
Elue, Parametric Softplus, Threshold linear etc.

Objectives and Optimizers

Objective functions
« Error loss: rmse, mse, mae, mape, msle
« Hinge loss: squared_hinge, hinge
» Class loss: binary_crossentropy, categorical _crossentropy

Optimizers
* Provides SGD, Adagrad, Adadelta, Rmsprop and Adam.
 All optimizers can be customized via parameters.

Lys

life.augmented

More on Optimizers

- Adaptive Gradient Algorithm (AdaGrad) : maintains a per-parameter
learning rate that improves performance on problems with sparse gradients
(e.g. natural language and computer vision problems).

* Root Mean Square Propagation (RMSProp) : maintains per-parameter
learning rates that are adapted based on the average of recent magnitudes
of the gradients for the weight (e.g. how quickly it is changing). This means
the algorithm does well on online and non-stationary problems (e.g. noisy).

- Adam : adapts the parameter learning rates based on the average first
moment (the mean) as in RMSProp, and also makes use of the average of
the second moments of the gradients (the un centered variance).

Lys

life.augmented

More on Optimizers

107 MHNIST Multilayer Neural Network + dropout

— AdaGrad
RMSProp
SGDMNesterov| |
AdaDelta

braiming cost

H : ;
i 5l 100 150 200
iterations ower entire dataset

life.augmented

Let's see an example network...

life.augmented

https://transcranial.github.io/keras-js/#/
Keras. /s e

DEMOS 3 . | —

Basic Convnet for MNIST

Basic Convnet MNIST
Convolutional VAE MNIST
AC-GAN MNIST | O _ o .
Convolutional Variational Autoencoder, trained on MNIST
ResNet-50 ImageNet
Inception v3 ImageNet
I-'__- I.
DenseMNet-121 ImageNet ‘ == b B B . . -
L5 Auxiliary Classifier Generative Adversarial Network, trained on MNIST
SqueezeNet v1.1 ImageMet
Bidirectional LSTM IMDB
Image Super-Resolution e . .
== 50-layer Residual Network, trained on ImageNet
LINKS
O GitHub repo

Lys

life.augmented

https://transcranial.github.io/keras-js/#/

Untitled - Mozilla Firefox oSt M3 o s4apPM I

— Untitled

¢ @ D localhost ‘ - O ‘ vy IN @ =
File Edit View nsert Cell Kemel Widgets Help Trusted & |Pyll 30
o B+ x @ B 42 ¢ N B C Code | =
% In [34]: # Importing the dependencies
tmatplotlib inline
i import numpy as np, keras.backend as K,matplotlib.pyplot as plt, os I

from keras.models import Sequential

| from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.datasets import mnist

from keras.utils import np utils|

z from sklearn import metrics
-
In [22]: # setting the image convention to theano i
K.set image dim ordering(‘th')
fix random seed for eproducibility
Q seed = 611
np.random. seed(seed)
In [SO]: # Load and preprocess the database
(X train, Y train), (X test,Y test) = mnist.load data()
L plt.imshow(np.squeeze(X train[e,:,:]))

print(Y train[0]

numTrainImages = X train.shape[6]
numTestImages = X test.shape([8]
imRows = X train.shape[1]

imCols = X train.shape[2]
numChannels = 1

| — # reshaping the data to match the theano setup [samples][number of channels][width][height] in our case the number of chan
a X train = X train.reshape(numTrainImages,numChannels, imCols, imRows).astype('float32')
X test = X test.reshape(numTestImages,numChannels,imCols,imRows).astype('float32')

Normalizing the input images to be between 0 1
_train = X train/255

_test = X test/255

one hot encode outputs (Mean the value is one If the right category zero otherswise
Y train = np utils.to categorical(Y train)
Y test = np utils.to categorical(Y test)

num classes = Y test,shape[1]

Y
XX n

life.augmented

