
Deep Learning Tools &

Frameworks

Danilo Pau

Advanced System Technology

Agrate Brianza

Many Deep Learning Frameworks 2

DL Framework Popularity (Oct.17)
• TensorFlow dominates the field with the largest active community:

• It can be used as a back-end in Keras and Sonnet

• Pros: general-purpose deep learning framework, flexible interface, good-looking computational graph

visualizations, and Google’s significant developer and community resources.

• Keras is the most popular front-end for deep learning:

• Used as a front-end for TensorFlow, Theano, MXNet, CNTK, or deeplearning4j.

• Pros: simplicity, ease-of-use, allowing fast protoyping at the cost of some of the flexibility and control that

comes from working directly with a framework.

• Caffe has yet to be replaced by Caffe2:
• Caffe2 is a more lightweight, modular, and scalable version of Caffe that includes recurrent neural networks.

• Caffe and Caffe2 are separate repos, so data scientists can continue to use the orginial Caffe.

• However, there are migration tools such as Caffe Translator that provide a means of using Caffe2 to drive existing Caffe

models.

• Theano continues to hold a top spot even without large industry support

• Sonnet (Deepmind 2017) is the fastest growing library
• a high-level object oriented library built on top of TensorFlow. +272% Q3’17vs Q2’17 for Google Search.

• DeepMind has a focus on Artificial general Intelligence and Sonnet can help a user build on top of their specific AI ideas and

research.

3

https://github.com/caffe2/caffe2/blob/master/caffe2/python/caffe_translator.py

GitHub DL Frameworks Aggregated Popularity

(Oct.2017)
4

https://twitter.com/fchollet/status/915366704401719296

TensorFlow
29%

Keras
13%

Caffe
11%

MxNet
10%

Theano
6%

CNTK
5%

DL4J
5%

Paddle
5%

Pytorch
4%

Chainer
2%

Torch7
2%

Digits
2%

Tflearn
2%

Caffe2
2%

Dlib
2%

Popularity (%)

* = DL Frameworks Callouts with blu line are supported by ST

Automatic NN Mapping Tool

DL Framework Popularity (Oct.17) 5

DL Framework Rank Overall Github Stack Overflow Google Results

tensorflow 1 10.87 4.25 4.37 2.24

keras 2 1.93 0.61 0.83 0.48

caffe 3 1.86 1.00 0.30 0.55

theano 4 0.76 -0.16 0.36 0.55

pytorch 5 0.48 -0.20 -0.30 0.98

sonnet 6 0.43 -0.33 -0.36 1.12

mxnet 7 0.10 0.12 -0.31 0.28

torch 8 0.01 -0.15 -0.01 0.17

cntk 9 -0.02 0.10 -0.28 0.17

dlib 10 -0.60 -0.40 -0.22 0.02

caffe2 11 -0.67 -0.27 -0.36 -0.04

chainer 12 -0.70 -0.40 -0.23 -0.07

paddlepaddle 13 -0.83 -0.27 -0.37 -0.20

deeplearning4j 14 -0.89 -0.06 -0.32 -0.51

lasagne 15 -1.11 -0.38 -0.29 -0.44

bigdl 16 -1.13 -0.46 -0.37 -0.30

dynet 17 -1.25 -0.47 -0.37 -0.42

apache singa 18 -1.34 -0.50 -0.37 -0.47

nvidia digits 19 -1.39 -0.41 -0.35 -0.64

matconvnet 20 -1.41 -0.49 -0.35 -0.58

tflearn 21 -1.45 -0.23 -0.28 -0.94

nervana neon 22 -1.65 -0.39 -0.37 -0.89

opennn 23 -1.97 -0.53 -0.37 -1.07

https://blog.thedataincubator.com/2017/10/ranking-popular-deep-learning-libraries-for-data-science/

Interoperability

• https://onnx.ai/

6

Interoperability

• https://www.khronos.org/nnef

7

https://www.khronos.org/nnef

Keras (2017) 8

https://www.cio.com/article/3193689/artificial-intelligence/which-deep-learning-network-is-best-for-you.html

= with Keras

= with Lasagne

Keras

• A Python based high-level neural networks API

• Designed to be minimalistic & straight forward yet extensive (e.g. Lamba

layers)

• Originally built as a wrapper around Theano.

• But now also work on top of TensorFlow or CNTK.

• The focus is making able the developers for prototyping in a fairly quick

way with proprietary custom layers.

9

Keras

• Supports

• Feed-Forward, Convolutional and Recurrent Neural Networks,

• Reinforcement learning (maximize some notion of cumulative reward)

• Linear and deep wide models

• Why to use Keras?

• User friendliness: Simple to get started, simple to keep going, yet deep enough to make

some serious complex models.

• Modularity: Highly modular.

• Easy extensibility: Easy to expand and add custom definitions.

• Work with Python: Written python no new training and syntax knowledge required.

10

Coverage of Keras 11

Recurrent neural networkConvolutional neural networkFeed forward neural network

Linear models

Support Vector Machines

Deep and wide models

Random forests

Reinforcement learning

Keras

• Link: https://keras.io/ (general information, documentation)

• Installation instructions: https://keras.io/#installation (OS related)

• Sample codes: https://github.com/fchollet/keras (openly available)

• A very nice link for starters:

https://machinelearningmastery.com/tutorial-first-neural-network-

python-keras/ (if you are new on Keras, this is highly recommended)

12

https://keras.io/
https://keras.io/#installation
https://github.com/fchollet/keras
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/

Keras: General Design Principals

General Idea in Keras is that it is based on layers and their inputs/outputs

• Prepare your inputs and output tensors

• Create first layer to handle the input tensor

• Create output layer to handle targets

• Build virtually any model layers you like in between

13

Keras
Keras has a number of built-in layers. Notable examples include

• Regular Dense layer: Fully connected, MLP type

Syntax is

keras.layers.core.Dense(output_dim, init = ‘glorot_uniform’, activation = ‘linear’, weights = None,

b_regularizer = None, W_regularizer = None, activity_regularizer = None,

W_constraint = None, b_constraint = None, input_dim = None)

• 1D Convolutional layer

Syntax is

keras.layers.convolutional.Convolution1D(nb_filter, filter_length, init = ‘uniform’, activation = ‘linear’,

weights = None, border_mode = ‘valid’, input_dim = None

W_regularizer = None, b_regularizer = None, W_constraint = None

activity_regularizer = None, b_constraint = None,

keranal_size=1)

14

Keras Architecture
• 2D Convolutional layer

Syntax is

keras.layers.convolutional.Convolution2D(nb_filter, filter_length, init = ‘uniform’, activation = ‘linear’,

weights = None, border_mode = ‘valid’, input_dim = None,

W_regularizer = None, b_regularizer = None, W_constraint = None

activity_regularizer = None, b_constraint = None,

kernel_size=(1,1))

• Recurrent layers, LSTM, GRU, etc.

Syntax is

keras.layers.recurrent.GRU(output_dim, nb_filter, filter_length, init = ‘glotot_uniform’, inner_init = ‘orthogonal’,

activation = ‘sigmoid’, inner_activation = ‘hard_sigmoid’, statefull = False,

go_backward = False, input_dim = None, input_length = None)

.

15

Keras Architecture

Some other types of supported layer includes

• Dropout

• Noise

• Pooling

• Normalization

• Embedding and many more

16

Keras Activations
• Almost all famous activations are available in Keras and can be added

as an activation function to the layer. Such as

• Sigmoid

• Tanh

• ReLu

• Softmax

• Softplus

• Hard_sigmoid

• Linear

• Advance activations as separate layers, include, LeakyRelu, PRelu,

Elue, Parametric Softplus, Threshold linear etc.

17

Objectives and Optimizers

Objective functions

• Error loss: rmse, mse, mae, mape, msle

• Hinge loss: squared_hinge, hinge

• Class loss: binary_crossentropy, categorical_crossentropy

Optimizers

• Provides SGD, Adagrad, Adadelta, Rmsprop and Adam.

• All optimizers can be customized via parameters.

18

More on Optimizers

• Adaptive Gradient Algorithm (AdaGrad) : maintains a per-parameter

learning rate that improves performance on problems with sparse gradients

(e.g. natural language and computer vision problems).

• Root Mean Square Propagation (RMSProp) : maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes

of the gradients for the weight (e.g. how quickly it is changing). This means

the algorithm does well on online and non-stationary problems (e.g. noisy).

• Adam : adapts the parameter learning rates based on the average first

moment (the mean) as in RMSProp, and also makes use of the average of

the second moments of the gradients (the un centered variance).

19

More on Optimizers 20

Let’s see an example network…

21

https://transcranial.github.io/keras-js/#/ 22

https://transcranial.github.io/keras-js/#/

