
23/10/2018

1

CPS Summer School Sept. 2018

Renaud De Landtsheer

rdl@cetic.be

Placer: a Design-time Model-based Tool

for Mapping Task-based SW

onto Heterogeneous HW

 Context
 About research, PhD, industry, etc.

 Placer
 Heterogeneity
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

mailto:rdl@cetic.be

23/10/2018

2

OscaR as a tech transfer project

 Oscar

 Open source framework for combinatorial optimization

 Started in 2011

 Open source LGPL license

 https://bitbucket.org/oscarlib/oscar

 Scala

 Two engines

 OscaR.CP by UCL Belgium
 The one we use here

 OscaR.CBLS by CETIC Belgium
 My main work

 Very good scalability

 No scheduling engine in 2016, start of TANGO

 No time to build one

 Not an industry

 Not a university

 A bridge between university and industry

 Technology transfer

 Push mode: we have some technology
 from academia, from our own developments

 Pull mode: industry comes with a problem
 Requires technical skills, selected knowledge, considered as risky

 Also a bridge for people

 A « private » research centre
 May not compete directly against regional companies

 Must offer more innovative service

 Research projects; seldom get 100% funding

 Consulting missions to reach 100% salary pay

What is CETIC?

https://bitbucket.org/oscarlib/oscar

23/10/2018

3

Technology Readiness Level

INDUSTRIAL
RESEARCH

FUNDAMENTAL RESEARCH

MARKET
SYSTEM TEST, LAUNCH & OPERATIONS

SYSTEM / SUBSYSTEM DEVELOPMENT

TECHNOLOGY DEMONSTRATION

TECHNOLOGY DEVELOPMENT

RESEARCH TO PROVE FEASIBILITY

BASIC TECHNOLOGY RESEARCH TRL 1

TRL 2

TRL3

TRL 4

TRL5

TRL 6

TRL 7

TRL 8

TRL 9

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

23/10/2018

4

 One of my research project

 H2020 research project

 Start: Jan 2016

 End: Jan 2019

 Today’s topic:

 Placer tool

 My contribution to TANGO

TANGO project

 CPU core
 Executes one task at a time
 Switch from one task to another one

 FPGA
 A large set of configurable hardware gates
 Can hosts functional blocks

 Matrix multiplication, FFT, etc.

 Also several blocks at the same time, provided it has enough gates

 Each functional blocks
 Is permanently allocated some gates

 Can be running independently of the others

 Configuration
 Must be performed at start up (or burnt in)

 Cannot be changed during execution (simplifying assumption here)

 GPGPU
 A set of very small cores (like CPU cores)
 Can run several tasks at the same time
 Each executing tasks uses a set of cores allocate to it
 Upon completion, the cores are free for another task

Heterogeneity in processing elements

23/10/2018

5

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

 Model-based Design time tool

 Find the best mapping of software onto hardware

What is Placer?

FPGA

CPU1

CPU2

Input1:

model of the SW

tasks, transmissions

Input2:

model of the HW

processors, busses

Output:

Mapping

Placement

tasks on proc.

transmissions on bus

Schedule

when to run tasks

23/10/2018

6

 Given
 Meta info

 Relevant processor classes and their resources

 Model of Software
 Tasks

 Implementations (several possible, for declared targets classes)
 Transmissions between tasks

duration = throughput * dataSize + latency

 Model of Hardware
 Processing elements (of the declared classes)
 Busses

 Find mapping and schedule
 Task → (processing element, implementation, timing)
 Transmission → (bus, timing)

 Such that
 Capacities are not exceeded
 Minimize: Timing or Energy (or both)

Specification of Placer

Architecture of Placer

Mapping problem
(Json)

Model
of the hardware

Model
of the software

Mapping goal

Mappings (Json)

Tasks → processor
Transmission → bus

+ global schedule
+ implementation

selection

Placer.jar

Placement to
CP problem

OscaR.cp
solver

parser output

Additional
Constraints

Command line
parameters

Graphical front-end

Boxes-and-arrow models

23/10/2018

7

 Written in Scala

 Open source LGPL

https://github.com/TANGO-Project/placer

 Developed as part of the TANGO H2020

www.tango-project.eu/

 Ongoing work

 To be released by end 2018

 Developed by me, myself and RDL

 20%-time job over two years

 Graphical modelling tool by ongoing internship

About Placer

 External reasons

 Design-time mapping tool
 Specifically targeting heterogeneous platforms

 Chose between FPGA or CPU or GPGPU

 Make a global decision: mapping and timing

 Distributed in open source

no closed source dependencies, no licence key
(except the GUI that relies on a community edition JAR)

 Internal reasons

 Validate that CP can be useful to solve HW SW mapping
of industry use case in the world of embedded systems
 (Not too many tasks)

 Learn about the applicability of CP to multi-modal problems

 Bring the HW SW mapping problem to the (local) CP community
 Known as a “flexible job-shop problem”

 So far considered as an open problem

Why Placer?

https://github.com/TANGO-Project/placer
http://www.tango-project.eu/

23/10/2018

8

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

 Software

 nbTasks:51

 nbTransmissions:62

 Realistic

 Durations

 Data transfer

 Lacking

 Energy data

 Hardware:

 4 identical cores

 A single bus connecting them all

 Intuitive parallelization …

Embedded use case: AquaScan

23/10/2018

9

Declaring the meta info

Example of meta info

"processingElementClasses":

[

{

"switchingTask":

{

"name":"cpu",

"resources":[],

"properties":[],

"switchingDelay":1

}

},

{

"multiTaskPermanentTasks":

{

"name":"fpga",

"resources":["gates"],

"properties":[]

}

}

],

23/10/2018

10

Modelling the hardware

Example of processing element
"hardwareModel":

{

"name":"ExampleHardware1",

"processingElements":

[

{

"processorClass":"cpu",

"name":"Core1",

"memSize":32768

},

{

"processorClass":"fpga",

"name":"Fpga1",

"memSize":32768,

"resources":[{"name":"gates", "value":1000}]

}

]

}

Memory used for

• computation

• data buffering around transmissions

23/10/2018

11

Example of bus

"busses":

[

{

"halfDuplexBus":

{

"name":"globalBus",

"relatedProcessors":

[

"Core1",

"Core2",

"Core3",

"Core4"

],

"timeUnitPerDataUnit":1,

"latency":1

}

}

Modelling the software

23/10/2018

12

Example of task
{

"name":"Digit1Correlation",

"implementations":

[

{

"name":"CpuDigit1Correlation",

"target":"cpu",

"computationMemory":"2",

"duration":"43205"

},

{

"name":"FpgaDigit1Correlation",

"target":"fpga",

"resourceUsage":[{"name":"gates", "formula":"300"}],

"computationMemory":"2",

"duration":"8640"

}

]

},

Example of transmission

"transmissions":

[

{

"name":"InputToAvgFieldBrightnessCorrection",

"source":"Input",

"target":"AvgFieldBrightnessCorrection",

"size":8192,

"timing":"Sticky"

},

Timing contraint on transmission can be:

Free, ASAP, ALAP, Sticky

23/10/2018

13

 Objective

 minMakespan

 minEnergy

 pareto(minMakespan,minEnergy)

 Constraints

 samePE(tasks)

 notSamePE(tasks)

 runOn(task,pe)

 notRunOn(task,pe)

 powerCap(maxPower)

 energyCap(maxEnergy)

 maxMakespan(deadline)

Constraints and objective

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

23/10/2018

14

 Placer does not parallelize the intuitive way

 More info:
 DigitXCorrelation lasts for 50% of the make span
 Core4 is used at 99,3% (it waits vey little for data)

 Not happy with parallelization: not the expected one

Let’s min the makespan (no FPGA)

makeSpan:82889 us
Core1:

Digit3PatternsIdentification
Digit4Correlation

Core2:
PositionAccuracyEstimation
Digit1Correlation

Core3:
BarcodeResearch
Digit3Correlation
...

Core4:
Input
AvgFieldBrightnessCorrection
...

 Grouping the tasks by stream to be the same core

With X in 1..4

Specifying constraints

{
"samePE":[

"DigitXExtraction",
"DigitXFinalCut",
"DigitXLightingNormalisation",
"DigitXLightingEnhancement",
"DigitXCorrelation",
"DigitXPatternsIdentification",
"DigitXDecision",
"DigitXValueDetermination"

]
}

23/10/2018

15

 Desired parallelization is obtained

 Schedule is slightly longer, by 1.2%

Optimizing with constraints

makeSpan:83911 us
Core1:

Digit4…
Core2

Digit3…
Core3

Digit2…
Core4

Input
…
Digit1 …
Output

(original makeSpan: 82889 us)

 Some tasks are located on FPGA

 Only 3 out of 4 can fit on FPGA, so speedup is only 2%

Min make span with FPGA no constraint

makeSpan: 81017 us
Core1:

...
Core2:

...
Core3:

...
Core4:

Input
...

Fpga1:9615:
Digit2Correlation
Digit3Correlation
Digit4Correlation

(original makeSpan: 82889 us)

23/10/2018

16

 From 1000 to 1200 gates

 Now all tasks fit

 Good, but FPGA is under-used in time

Try out a bigger FPGA

{

"processorClass":"fpga",

"name":"Fpga1",

"memSize":32768,

"resources":[{"name":"gates", "value":1200}],

"properties":[],

"powerModel":"0"

}

makeSpan:46602

 Instantiate an implementation once, so that several

tasks can be executed by this instantiated

implementation

 Placer has to decide

 how many implementation to instantiate

 which what parameters

 which task use which instantiation

 In case they have different parameters

 and to schedule the tasks accordingly

Shared implementation on FPGA

23/10/2018

17

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

Graphical editor (software view)

Eclipse plug-in based on Obeo designer, community edition

By Romain Launay, ESEO engineering school, FR, intern at CETIC

23/10/2018

18

Graphical editor (hardware view)

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

23/10/2018

19

 Oscar

 Open source framework for combinatorial optimization

 Started in 2011

 Open source LGPL license

 https://bitbucket.org/oscarlib/oscar

 Scala

 Two engines

 OscaR.CP by UCL Belgium

 OscaR.CBLS by CETIC Belgium

Under the hood: OscaR.cp

Completeness Scalability Expressivity

CLBS No +++ ++

CP Yes + +++

MIP Yes ++ +

Constraint programming in one slide

Splitting

Cutting the corners

through constraint propagation

Propagation yields

a single solution

Splitting



Propagation concludes

to no solution

Backtracking:

Exploring the second branch

Search space

Existing, but unknown solution

https://bitbucket.org/oscarlib/oscar

23/10/2018

20

val nQueens = 1000 // Number of queens

val Queens = 0 until nQueens

// Variables

val queens = Array.fill(nQueens)(CPIntVar(Queens))

// Constraints

add(allDifferent(queens))

add(allDifferent(Queens.map(i => queens(i) + i)))

add(allDifferent(Queens.map(i => queens(i) - i)))

// Specifying the search strategy

search(binaryFirstFail(queens))

val stats = start(nSols = 1)

println(stats)

An example of CP script

White

magics

Black

magics

Both the model and the search strategy

• are critical to have good overall efficiency

• have no direct impact on completeness

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

23/10/2018

21

 Variables are
 start, duration, end

 processorID

 implementationID

 Constraints on Tasks
 (duration,target,implementation)  …

 timing

Translating Tasks to CP

table(implementationID, processorID, duration,
implemAndProcessorAndDurations)

val start: CPIntVar = CPIntVar(0, maxHorizon)

end === (start + duration)

 Table constraint does not work on large domains

 Problem

 From industrial case, duration of transmission and tasks

can be very different depending on target

From 0 to 8.000.000

 Table constraint iterate over full domain of variable

 Solution

 Do not put duration in the table constraint

 Use a durationID in the table, and map the duration ID to the actual

duration using a constraint that does not iterate over the domain

Lessons learnt

table(implementationID, processorID, durationID ,
implemAndProcessorAndIndice)

element(durationIDToActualDurationArray,
durationID,duration)

table(implementationID, processorID, duration,
implemAndProcessorAndDurations))

23/10/2018

22

 Variables are

 start, duration, end

 busID

 Constraints on Transmissions

 (EmittingTask.target,target,ReceivingTask.target)  …

 (duration,target)  …

 EmittingTask.end <= start

 End <= ReceivingTask.start

Translating Transmissions to CP

table(originProcessorID, busID, destinationProcessorID,
processorToBusToProcessorAdjacency))

 Generally posted as resource constraints

 FPGA posted as bin-packing constraints,

on each resource dimension

Translating Busses and processors to CP

maxCumulativeResource(startTimeArray, durationArray,
endArray, amountArray,
maxResource)

weightedSum(concatenatedRequirementsArray,

concatenatedUsageArray,resourceToUsage(resource))

23/10/2018

23

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modelling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

 What makes a CP search strategy a good one?

 CP performs a depth-first-search, left to right

exploration

 General principle:

If an incorrect decision is taken,

fail as quickly as possible

 So find the key decision that produce the most constraint

on the overall solution, and set these first

 If the decision is wrong, it will fail quickly

 If the decision is right, you win

 Use a “good enough” heuristic to make the correct

decision

Search strategies

23/10/2018

24

 Pure scheduling can be solved efficiently

 Performs some learning about the decision

that are to be taken high in the tree

 … but we do not have a pure scheduling problem,

placement greatly impacts the scheduling constraints

Search Strategies

conflictOrderingSearch(

taskAndTransmissionStarts,

taskAndTransmissionStarts(_).size,

taskAndTransmissionStarts(_).min)

[COS2015] Conflict Ordering Search for Scheduling Problems, Steven Gay,

Renaud Hartert, Christophe Lecoutre, Pierre Schaus, 2005

 What constraints the overall solution?

 In our case, the placement of the longest tasks

 Distribute on task placement, the longest tasks first

 Overall search strategy is a composite

 Finally, you can also set it through the command line

Search strategies

conflictOrderingSearch(

processorIDChoices,

taskMaxDurations(_),

processorIDChoices(_).minBy(procID => processorLoadArray(procID)))

distributeOnTaskPlacementLessBuzyProcFirst

++ distributeOnTransmissionRouting

++ distributeOnTaskAndTransmissionStarts

23/10/2018

25

 CP search explores a search tree

 Revising first decisions
 requires exploring the full subtree

rooted at the decision
 This can still take time

 What if some initial decisions
are not good?
 Search might be stuck with this decision for

long time

 LNS : repeatedly perform CP search
on partially decided problem

Large Neighbourhood Search (LNS)

currentSol = findFeasibleSolution(problem)
While(…){

partialAssignment = selectSomeAssigments(currentSol)
currentSol = findBest(problem

 partialAssignment
 obj < currentSolution.obj)

}

 What is a good assignment selection?

 Not restricted to assignments performed at the bottom of

the search tree

 Enable the revision of assignments made early in the

search tree

 Identify linked assignments

 Ex: sameCore Constraints

 constraints two tasks to be on the same processing element

 You need to release all placement of these tasks together

Selecting assignments in LNS

23/10/2018

26

 Release all schedule, and 90% of placement

 Works great except when dealing with shared parametric

implementations on FPGA

 Release schedule and placement of 90% of the tasks

 Release 10% of the tasks and their influence zone

 Release all tasks placed on a subset of the processing

elements

 Combination of the above

Relaxation procedure

 Hello world

 TANGO
 Heterogeneity

 Placer
 What?
 Why?
 An example
 Play with it
 GUI
 Under the Hood

 CP solver

 Modeling into CP

 Guiding CP search

 LNS

 Lessons learnt

Content

23/10/2018

27

 Overflow

 Problem

 Industrial used picosecond as a time unit = 10-12 s

 All numbers went huge, since tasks can take milliseconds

 Overflow happened within solver, not detected, silent error

 Common issue in combinatorial solvers (Gecode, GoogleCP, OscaR)

 Solution

 Add overflow detection in input data,

check the upper bound of biggest values against MaxInt

(and perform these checks using long)

Lessons learnt

 Several models with subtle differences

 Problem

 Different models with subtle differences

 Quickly got lost in what represents what, waste of time

 Solution

 Add an « info » field in the file

 Placer forwards this field to the solution file

Lessons learnt

23/10/2018

28

 Several versions of Placer

 Problem

 Input language of Placer has evolved over time

 Json parsers are not always user friendly

 Non-mentioned fields are not considered as errors, just empty lists

 Unexpected fields are not an error either

 Solution

 Add version number to the file format of Placer

 Check it when reading the files

Lessons learnt

 Non-satisfiable models

 Problem

 Input problem might be unsatisfiable

because of a conjunction of constraints

 Ex: specified deadline is too tight

 Ex: two outgoing transmissions in ASAP mode

and only one bus available

 Solutions

 Trigger propagation every time a constraint is added, and report

failure mentioning the origin of the latest constraint

 Analyse the input model for some errors, and report them before

start up the solver

Lessons learnt

23/10/2018

29

When you ask for a constant/config parameter

 Or you have hidden it somewhere without telling anyone

… it means that you did not manage to get rid of it

Lessons learnt

All solvers are based on some black magics

You need to have some insight of the inner guts

to use it properly

No matters the level of documentation of the API

Lessons learnt

