Introduction to Neural Networks

Danilo Pau
Advanced System Technology

Agrate Brianza

‘ ' l life.augmented

Learning XOR

* Not linearly separable

Original @ space 1

I I

1
1
1
I
0 0 0 ;
i
0 1 1 L \1
8 l
1 0 1 ;
|
i
1 1 0 : 0
O B 0 1] ,¢l- ---------------------
| 1/ -
0 1 el
0£Z
"’ Source https://vision.unipv.it/Al/AIRG.html
life.augmented

Learning XOR

cy=X=*0 XOR

X 01 w, 0o o0 |0
y=11 X=11 0 1 19_[“”} 0 1 1
0] 111 c 1 0 1

1 1 0

"l Source https://vision.unipv.it/Al/AIRG.html

life.augmented

Function Approximation: linear combination
* Linear Approximator as 15t attempt

j=w-x+c, weRLceR

For XOR: ¥ = (X"X)'XTy

2 1 2 1 0 05 0

XT'xX =11 2 2 (X'™xX)'=]10 1 05 (XTX) ' XTy = | 0
2 2 4 0.5 0.5 0.75 0.5
squared squared

Hence approximator becomes ﬂ =0.5

K” Source https://vision.unipv.it/Al/AIRG.html
life.

Function Approximation: linear combination

"l Source https://vision.unipv.it/Al/AIRG.html
life.augmented

1
|

Solving XOR mms

o
-
L -4 0
. . \ \ . . . \ \ o
[=>] [ce] ~ [{=] wn < [se] o~ -~
U 7 adem
L {w 7% Adnmama
— , RN
o A e
e FRRLERRRA LR RN
o "
Z S =
L AASS RRERNTRR
ZZaa Y P
A S R SRERRRSRE
daRIRRRRRTARATAY SR
- - o
e S SR
AR
o
-

+c

t/AI/AIRG.html

ISIon.unipv.i

w
IIv

* (shallow) feed-forward neural network
y=w - ReLUWx + ¢)
Source https

augmented

lif

Universal approximation theorem
(Cybenko, 1989, Hornik, 1991)

For any target function
y — f* (ﬂ’;)j €T & Rd (which is continuous and Borel measurable)

andany € > 0 there exists parameters
heZ™ W e R4 w,ceecR" ceR

N this is the dimension of the hidden layer: it is a parameter in the theorem
such that the (shallow) feed-forward neural network

y=w-gWx+c)+c

approximates the target function by less than £

| ff(x) —w-gWx+c)+c|<ce

.
Source https://vision.unipv.it/AlI/AIRG.html (on a compact subset of k)

I Under the bonnet

How 3 self-driving car warks

Sigayis from G9S qlobl positioning systam} Lidar (tight dstection and ranging)

satelftes are conined with resdings from semsars baunce suises of Sght of the

tacho altimetess surrosndings. Mhese are analysed to

and qyroszese to peowide , A5 ey oy sk and the
“dges of rcads

Ultrasonic sensors may

be used to measurc the

pasition of abjects very

suchascurbs and cther by s centead computer that

vehiceswheoporting martgulates th stesi
‘sccelerator and brakes.
softmare mest understa Radar sensees menitee tra postisn of other
U ot of U 100, both vebiclis raarby. Such senies are already used
formal ands in adagtive Crue-control systemms

Core of all deep learning applications

Lys

life.augmented

.35% of all purchases on
Amazon are a result of
recommendation and
crossbuying™

Goy,
.Google News reports that ’h‘ SIE‘
recommendations increase articles

viewsd by 38% ™

+ . 709% of all internet- %

shoppers prefer to visit a

Artificial Neural Networ

JWith movies, Netflix reports that

personalized online shop with over 60% of their rentals originate
dations and i from 2
search systems'?
Yoy v
JGartner and Hanvard's Be«mav@ CHe ¢ £

Center predict that in 2010, over
25% of music sales will come from
taste-sharing Applications such as
recommenders.™

51% of the readers choose the
recommendation given by the
recommendation engine™

X

}\ A \% 7

|\
o, 0;{ }‘\0 A
i TR

;//
]
I{/.

W
X
XS

A
N
@W‘\
&

@ InputLayer @ Hidden Layer @ Output Layer

2\

State of the art

Adaptable

What are Neural NetworksS? wms

Dendrite

* Also referred to as Artificial Neural Networks. i Node of

| Ranvier ° -'&
/Il Cell body -""*

7

Axon Terminal

* Inspired by human neural system.

- Human neuron has three main components Axon Schwann cell
) Myelin sheath
« Dendrites Nucleus
« Takes inputs from other neurons in terms of electrical pulses. _
e Cell bOdy Synaptic Neurotransmitters

vesicle
 Makes the inferences and decides the actions to take.

: Voltage-
 Axon terminals gated Ca™

channel

Neurotransmitter
re-uptake pump Axon
terminal

Neuro-
/ transmitter

Y receptors

; e o Synaptic
Post-synaptic left

‘—'-’ 7 Synapse density M‘/\ }‘;:ndritic
ie.augmented ® [Nterface between Axons and Dendrites spine

« Sends the outputs to other neurons in terms of electrical
pulses.

Michael Jordan: There are no spikes in deep-learning systems. There are no dendrites. And they have Machine-Learni ng Maestro Michael
bidirectional signals that the brain doesn’t have. Jordan on the Dell.lSionS Of Blg Data and
Other Huge Engineering Efforts

We don't know how neurons learn. Is it actually just a small change in the synaptic weight that's responsible for
learning? That's what these artificial neural networks are doing. In the brain, we have precious little idea how Big-data boondoggles and brain-inspired chips are just
learning is actually taking place. two of the things we’re really getting wrong

By Lee Gomes
Spectrum: | read all the time about engineers describing their new chip designs in what seemstometobean posted 20 0ct 2014 119:37GMT

incredible abuse of language. They talk about the “neurons” or the “synapses” on their chips. But that can’t n u E E

possibly be the case; a neuron is a living, breathing cell of unbelievable complexity. Aren't engineers

Lo~

A
. K
A
2 ¥ R
=~ .

appropriating the language of biology to describe structures that have nothing remotely close to the complexity

of biological systems?

Michael Jordan: Well, | want to be a little careful here. | think it's important to distinguish two areas where the

word neuralis currently being used.

One of them is in deep learning. And there, each “neuron” is really a cartoon. It’s a linear-weighted sum that’s
passed through a nonlinearity. Anyone in electrical engineering would recognize those kinds of nonlinear

systems. Calling that a neuron is clearly, at best, a shorthand. It's really a cartoon. There is a procedure called
logistic regression in statistics that dates from the 1950s, which had nothing to do with neurons but which is

exactly the same little piece of architecture.

Ays

life.augmented

http://spectrum.ieee.org/robotics/artificial-intelIigence/machinelearning-maestro-michael-jordamgﬁg_mﬁ;gﬁ{%i%&f@g-data-and-‘other-hugé-engineering-eﬁrﬁs

Artificial Neuron

The heart of a neural network

Cell body

Activation function

‘1’ Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

. The heart of a neural network

Cell body

Activation function

‘1’ Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

The heart of a neural network

Cell body

X
L] L] L] 0
Activation function K
i~

‘1’ Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

8 The heart of a neural network
Qo
s

&
{/\
& Cell body
53

X
L] L] L] 0
Activation function K
i~

‘1’ Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

The heart of a neural network

X
L] L] L] 0
Activation function K
i~

‘1’ Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

8 The heart of a neural network
Qo
s

'&
S
& Cell body
53

X
L] L] L] 0
Activation function K
i~

"I Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

8 The heart of a neural network
Qo
s

'&
S
& Cell body
53

X
L] L] L] 0
Activation function K
i~

Approximation
of the expected
output

2

e

"I Inputs Weights Summation and Bias Activation Output

life.augmented

Artificial Neuron

Perceptron: The heart of a neural network

Convolutions

Kernel Size: the field of view of the convolution

Stride: the step size of the kernel when traversing
the image.

Padding: defines how the border of a sample is
handled.

Input & Output Channels: A convolutional layer
takes a certain number of input channels and
calculates a specific number of output channels

Input

2D kernel

2D Convolutions

convolved
feature

Bias = 2

« Convolution operation

« Aconvolution filter
IS a square (or cubic) matrix

Lys

life.augmented

It is first centered on a pixel
of the input image

It produces a scalar value:
the dot product

between the filter

and the image region
around the pixel

By mapping the same
procedure on all pixels

of the input image,

a new image is produced
(i.e. a feature map)

3D Convolutions

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3)
®[z,2,0] WO[z,:,0]
0 |o |0 0 0 0 0 1 |0 |_1
0 |1 |1 1 2 0 0 -1|1 |-1
0 |:z |1 1 2 0 0 0 |_1|_1
0O 0 0 1 2 2 0 wll[:,:,1]
0 2 0 2 2 2 00 119
0 2 1 1 2 0 1 -
0 0 0 0 0 ! |‘1|‘l
71 w0 [: ;2]
= =4 0
0 |o |0 0 0 ’11
o1t 5 0 1 llﬁ IO
0 010 0 id Bd &
i e 0 Bias ho(1x1x1)
0 2 2 00 2 0 bO{:,:,0]
0 2 271 2 1
0 0 0 0 0
1,1, 2]
ofllofloyo o o0
0 lloAfo]2 1 0
2 |0 1 1 0
0 0 2 1 0 1 0
0 0 2 1 0 1 0
0 2 1 0 2 2 0
0O 0 0 0O 0 0 0

Filter W1 (3x3x3)
Wwll:,:,0]
([§ =1l g

1

1 0
1l -l
wll:,:,1]

-11 1
0 0
1 1
1[:,:,2]

-1
-1

_ o = I
=

1

Bias bl (1x1x1)
bl[:,:,0]
0

Qutput Volume (3x3x2)
olz,:2,0]

_s 0

£ 0 3
1
1

[zv:s

= o

4
o
3 3
5 9
3 2 -1

3D Convolutions

* Convolution operations (on images)

Input Volume (+pad 1) {7x7x3) Filter W0 (3x3x3) Fulter W1 (3x3x3) Cutput Volume (3x3x2)
w[z,:,0] wil[:,:,0] wl[:,:,0] ol:,:,0]
_ _ 0 0 0 o [0ffofo u_||u_; -1 0 0 4 4
« Aconvolution filter 0 2 1 2 [1]o]o 0 JoJo 00 1 501 Y
. . . o 1 2 1 [21]o(o 1||-1 1 1 1 1) B
IS a Square (Or CUbIC) matrIX U0 LON PN RIS O O A wil[z,:,1] wl[:,:,1] alz,:,11]
02020 00 0 o 10 0 34 1
e |n SymbOIS T T T T A 0 -1 -1 = 1,1
Y-— ‘A/*X 00000 00 1][-1]o 101 2 4 3
b 1 7 x[t,: 1] 0l:, 1,27 wllt,:,2]
) o o o o [o]o(o 1 1 1 -d
i-th feature map 0111 I oa 10 0 Feature Maps
convolution operator o111 oo T L
— A 1as b0 (Axlxl) Bias bl {1xlxl)
a 2 0 0 0 1 BO[:,4,0] bB1l[:,:,0]
* where;: i 5 ! 0
Input image (e.g. RGB) T AR
0 0 o o [ofoAo ‘afo ‘4/1
0 2 0 1 t]r]o
01 0 0 1 Jfo
01 001 1 0 . .
SN S SL R Ea Convolution filters
0 0 0 2 0 2 0
0 0 00 0 0 0

Lys

life.augmented

3D Convolutions

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wl[z2,:,0] wl[z,:,0] .,.,0]
oflofoJo o 0 o 1o 1 ol [E 3
0 2 /o [0 |[1] @ =10 BN E
0 1 0 11 o -1 1 g8 10 -3
2 0 0 wl[z,:,1] ofz,:,1]
2 0 0 -1 0 0 -8 -8B -3
1 -1 0 31 0
2 0
0 1 10 3 85 Input image Convolutional Filters Feature Maps
g wl[z,:2,2]
1 ET i i
0 0o o depth
0z |1 i1l 1o onst =t { .)..L’A.'li ;
7 Erl 5 - 71|1 0 1 0 0 .I.Y..;‘ height
e — —>OOOOO—>
Bias b (1x1x1) Bias bl (1x1x1) ’
08 1 202 20 20 bQ{:,:,0] bl[:,:,0] .
00 L2 0 1 0 width
0 0 0 V]
te2,2] toggle movement
0 0|0 0 00 ™
0241 |1 0 0
1|0 1 0 0
0O 01 0 0 0 0
g 1 0 2 1 0
0 2 1 1T L
0 0 0 0 0 0

life.augmented

Transposed Convolutions

 Also known as Fractionally Strided
Convolutions (e.g. 1/2, 1/4 etc)

» Perform some fancy padding on the input

* Not able to numerically reverse
convolution followed by down sampling

Sparse Connectivity

Sparse connections due to small
convolution kernel

Sparse Connectivity

OX -) - JONO

Sparse connections due to small
convolution kernel

Dilated Convolutions

Convolutions with Stride

%ai@i PR
20996 " 6098000
...... O ®® ® }D e

Stride 1

@ = zero padding

life.augmented

Receptive field or field
of view of the filter
(filter size, e.g. 5x5x3)

Lys

life.augmented

Output of filter #3
Output of filter #2

Output of filter #1

32

Output of filter #4

Output of filter #5

/

e

>od©©<

N\
VV/

I

]

32

3

height = 32

W = 32 #input size
F =5 #filter size
P = 2 # padding

S =1#stride

— depth =5

width = height =

W—-F+2P

Each filter has

(5x5*x3+1) =76 weights

and 75 local (in space= connections
to a neuron)

+1

32

Complexity of 3D Convolutional Layer

Wy = Hy * Dq - Input feature map
Number of filters K, l
Filter spatial extension F, F, v o * Fyx By x Ko« Hy x W,

The stride S, (B xFyxE,—1)+ 1)« K« Hy * W, '

The amount of zero padding P.

Usually E, = D; and no padding is

Wl - Fx +2P] :)
W, = S +1 applied on , direction
H, — E,+2P
HZ — ! Sy ~+ 1

Lyy D, =K Output feature map

life.augmented

Netscope CNN Analyzer

* https://dgschwend.github.io/netscope/#/preset/vgg-16

convl 1 - convolution

* VGG ILSVRC 16 layers

convil_1

relul_1

L3

relul 1 - relu - InPlace

convl 2

relul_2

https://dgschwend.github.io/netscope/#/preset/vgg-16

Parameter sharing

 To limit number of parameters in Convolutional Layers.
* Using the example before

» a volume of size [32x32x5] has 5 depth slices, each of size [32x32]
there are 32*32*5 (slide 20) = 5,120 neurons in the Conv Layer
each neuron has a own 5*5*3 (filter) = 75 weights and 1 bias.
This adds up to 5,120 * 76 = 389,120 parameters for Conv layer itself.
How to reduce it ?

- Spatial correlation assumption: if one feature is useful to compute at some spatial position
(x,y), then it should also be useful to compute at a different position (x,, y,).

- Solution: To constrain the neurons in each depth slice to use the same weights and bias.

« Only 5 unique set of weights, one for each depth slice, for a total of 5 slices*(5*5*3 weights
per slice) = 375 unique weights, (+5 biases).

Lys

life.augmented

Number of filters K,

Filter spatial extension F, F, F,,
The stride S,
The amount of zero padding P. l

W,

H2=

Lys

life.augmented

Summary of Convolutional Layer

With parameter sharing, the layer requires
F. = E,x F, * D, parameters per filter, for a

total of F, Fy,x F, * D; * K + K biases.

Usually E, = D; and no padding is

S +1 applied on , direction
H1 - Fy +2P
+1
S
D2 =K

Depth wise separable convolution

)
w, —
h —1
! ” h2 : r:‘I{:;ut
d —J
1
d1
d1

* Consider d; = 16 channels, wy = hy = 3 each kernel (2D) - 16 feature maps.

- Traverse these 16 feature maps with d,,; = 32, w, = h, = 1 convolutions each

* This results in 656 = [16 * (3% 3) + 16 = (32 * 1 * 1)] parameters opposed to the
4608 = (16 = 32 * 3 * 3) parameters from non depth separable filtering.

Lys

life.augmented

Pooling Features

e Projection
o
T 1 ;
Convolved Pooled
Feature Feature
Map Map

Pooling features

1

|
) O 0 @ O

0.3

Max Pooling, 3:1

0.5

|
2O 0 0 W

0.2

Average Pooling, 3:1

life.augmented

Summary of Pooling Layer

W]_*H]_*Dl

Input Feature Map

Spatial extension F 1 No parameters
The stride S —> | |
W, — F
Wz — S +1
O F M H,—F
utput Feature Map o = Ly
, =
S
‘1’ D, = D4

life.augmented

z = f1,wax, + bias) Activation £ Functions

Unit Step
Sign (Signum)

Linear
Piece-wise linear

Logistic (sigmoid)

Hyperbolic Tangent

Rectified Linear Unit

m (ReLU)

life.augmented

|
|

SR e v

: z<0,
?(z) = 10.5, z=0,
1, z>0,
-1, z<0,
B(z) = 0, z=0,
1, z>0,
0(z) =z
1 >1
Z_2,
B(2) = 1 1 1
= —E<ZO<E,
1, z>0,
B(z) = —
2= 1ve
e? — e 2
0 = et +e’ %

, 0
‘D(Z)={g 720

0

Perceptron variant

Perceptron variant

Adaline, linear regression

Support vector machine

Logistic regression, Multi
layer-neural networks

Multi layer neural networks

Regression, approximation,
multi layer neural network

Most widely used activations

* Unit step
e Threshold
T Function choice depends on the
. . - 1 . characteristics of the data.
 Sigmoid Function : L
_ _ 06 l4+er] For example Sigmoid Function
 Like a step function but smoother ¢ /] works good for classification
. 02] urposes, resulting in Faster
» Best to predict probabilities W tpraiﬁing and conver%ence.

ReLU is good for approximation.
As it is simple so always start
from this if you don’t know the

« Stretched out version of the sigmoid ~ = - i el oot vanstng
| LT against gradient vanishing

Tan hyperbolic

function B
We can also define custom
activations.
* RelLU 2
m « Computationally efficient 1

life.augmented -3 -2 -1 0 1 2 3

Most widely used activations ™=

» The Softmax function, or normalized exponential function
A generalization of the logistic function

- Squeeze the K-dimensional input vector of real values into values In
the range [O, 1].

Local Response Normalization

- Compensating the tendency of RelLu to output large values

Activation i Normalized |
Feature | Activation i
Map == | Nbr (1) Feature =
,,// Xiji Map /’/ Yiji
Xiji
Yijp = a, B, y are hyper-parameters

(@ + B Zenpray Xijt DY

Layers of a Neural Network

* Neural network has three types of layers

* Input layer
« Can be from other neurons or feature inputs o
» Age, height, weight, pixels in the images etc.

- Hidden layers (one or more)

 Real power lies here X v ¥
« Adding more neurons to the network —
OUtP_Ut Iayer _ output layer
- Gives the output we want to predict input layer
 Probability of rain hidden layer

» Object class
 Disease is fatal or not...

Lys

life.augmented

Neural Networks

* Notations

xo,m=1{1,2,3,..}
hy',m = {1,2,3,..},p =1{1,2,3, ...}

Input Layer Hidden Layers

fe.augmented

11

Example of a Neural Network

 To predict if a person has to be
hospitalized given

. Goner MR
® O

« Distance from hospital
* Income

 Number of General Physician (GP)
visits

- Let us suppose to train neural

network, which means to compute all

the weights so that predictions are
accurate.

« Consider to have
 Age = 65
» Gender = Female
 Distance, income and GP visit high

Lys

life.augmented

Example of a Neural Network

 To predict if a person has to be
hospitalized given

. Goner MR
® O

« Distance from hospital
* Income

 Number of General Physician (GP)
visits
- Let us suppose to train neural
network, which means to compute all
the weights so that predictions are
accurate.
« Consider to have
 Age = 65
* Gender = Female

 Distance, income and GP visit high

Lys

life.augmented

Training neural networks
In supervised learning an assumption is to

have a relatively large labeled dataset.

Feed all the samples as inputs to get an
output. Called forward propagation or
inference run outputs.

Adjust
At start the weights can be randomized or
predefined depending on the applications

i Input
scenario. P > Nara] Ertof
Input
_}pu Network ﬂS‘éE Hu_lgrns'gq oﬁg

The result y is compared with ground truth
output y.

Desired

y

The task is to make the output value y to
be as close to y as possible reducing the
error expressed as Loss functions L(7,y).

Kys L(7,y) = (w - ReLU(Wz + ¢) + ¢ — y)* = error

life.augmented

Forward Propagation

e Let's do it (in a graphical way)

L(§,y) = (w - max(0, Wz + ¢) + ¢ — y)*

Element-wise loss, with ReLU as non-linearity

Training neural networks

Input Layer Hidden Layer Output Layer

0.18

1.1 s/ 7\ 073

C

-0.26

e Iteration:
I;rrort: c()J'.‘Sffl
INPUT HIDDEN QUTPUT -
LAYER LAYER LAYER Back Propagation

Adjust | * Go back and adjust the weights slowly. Aim is
;iis

Weights
Error < Error _4

Neural

Network * Repeat this process until the error we get is very

small.

lim Errory < €
€—0

Lys

life.augmented

Backward Propagation mm=

e Let'sdo it (in a graphical way)

U L) = 0 max(0,Wa +) +c—)2

Element-wise loss, with ReLU as non-linearity

Cmu) 9
91 %%

—— (w-ReLUWx +c¢) + c— y)2

ﬁ\l Backpropagation

error=—i21(J;i — Vi)?

L Actual output

Cost Function

Predicted output
(Y)

etz Backpropagation s
error==3",(5; — ¥;)? 1/
m -~

L Actual output

"

Cost Function

* Brute force

 Try all the possible combination of weights.
Predicted output « Plot the cost function.

(¥) « Use the weights which result in smallest error.

« Sounds simple but will take too much time !!!

Lys

life.augmented

J(w)

Backpropagation

_ Gradient Descent
» Enters the gradient descent

R Big learning rate Small learning rate

Initial

Gradient

I
l
I
" Learning rate

Global cost minimun

&L) Learning rate compromise
> « Big learning rate « Small rate.
w * Fast * Lots of small steps

‘q v/ « May never converge. <« Will converge for sure

Backpropagation

Gradient Descent

» Enters the gradient descent

J(w)

A Big learning rate Small learning rate

Initial ;

Gradient
weight \ ,"/
I

Learning rate

Use adaptive learning rate!

Gradient descent In action

- Example: Finding best linear fit to a set of points.

Cost at step 12 = 0.451 - Labelled data & model output

cost & targett
-«« denvative atp 175 — fitedline:y=x*p

150
125

104

target: t

075

050

0o 05 10 15 20 25 a0 35 40

r parameter: p
life ”

10

https://cs.stanford.edu/people/karpathy/con
vnetjs/demo/cifar10.html

Training Stats

pause - Loss:
Forward time per example: 12ms
Backprop time per example: 17ms 2.41
Classification loss: 1.68352 23—
L2 Weight decay loss: 0.00208 2.18 "'-\
Training accuracy: 0.37 f-o —t n
Validation accuracy: 0.27 -y :.? NN
Examples seen: 3967 1.87 x______,-"\\ A A
Learning rate: 0.01 change izz VIT<I1%
Momentum: |0.9 change 1.64
Batch size 4 change ok o.4k 08k 1.2k 1.6k 2k 2.4k 2.8k 3.2k 3.6k 4k
Weight decay: 0.0001 change clear graph

| save network snapshot as JSON I

| init network from JSON snapshot |

&

load a pretrained network (achieves ~80% accuracy)

|
Instantiate a Network and Trainer

Lys

life.augmented

layer defs = [];

layer defs.push({type:'input', out sx:32, out sy:32, out_depth:3});

layer defs.push({type:'conv', sx:5, filters:16, stride:1, pad:2, activation:'relu’'});
layer_defs.push({type: 'pool’, sx:2, stride:2});

layer defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'});
layer defs.push({type:'pool’', sx:2, stride:2});

layer defs.push({type:'conv', sx:5, filters:20, stride:1, pad:2, activation:'relu'});
layer defs.push({type:'pool’', sx:2, stride:2});

layer_defs.push({type: 'softmax’', num_classes:10});

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

