
Introduction to Neural Networks

Danilo Pau

Advanced System Technology

Agrate Brianza

Learning XOR

• Not linearly separable

2

1

1

0

0

0 0 0

0 1 1

1 0 1

1 1 0

Source https://vision.unipv.it/AI/AIRG.html

• 𝑦 = 𝑋 ∗ 𝜗

Learning XOR

0 0 0

0 1 1

1 0 1

1 1 0

XOR

3

Source https://vision.unipv.it/AI/AIRG.html

• Linear Approximator as 1st attempt

For XOR:

Hence approximator becomes

Function Approximation: linear combination 4

squared squared

Source https://vision.unipv.it/AI/AIRG.html

Function Approximation: linear combination 5

1

1

0

0

Source https://vision.unipv.it/AI/AIRG.html

Solving XOR

• (shallow) feed-forward neural network

6

ReLU

Source https://vision.unipv.it/AI/AIRG.html

Universal approximation theorem

(Cybenko, 1989, Hornik, 1991)
7

Source https://vision.unipv.it/AI/AIRG.html

Artificial Neural Network 8

Adaptable

State of the art

Core of all deep learning applications

What are Neural Networks? 9

• Also referred to as Artificial Neural Networks.

• Inspired by human neural system.

• Human neuron has three main components

• Dendrites

• Takes inputs from other neurons in terms of electrical pulses.

• Cell body

• Makes the inferences and decides the actions to take.

• Axon terminals

• Sends the outputs to other neurons in terms of electrical

pulses.

• Synapse

• Interface between Axons and Dendrites

http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts

Artificial Neuron 11

The heart of a neural network

Cell body

Activation function

Artificial Neuron 12

The heart of a neural network

Cell body

Activation function

Artificial Neuron 13

The heart of a neural network

Cell body

Activation function

Artificial Neuron 14

The heart of a neural network

Cell body

Activation function

Artificial Neuron 15

The heart of a neural network

Cell body

Activation function

Artificial Neuron 16

The heart of a neural network

Cell body

Activation function

Artificial Neuron 17

The heart of a neural network

Approximation

of the expected

output

Cell body

Activation function

Artificial Neuron 18

Perceptron: The heart of a neural network

Convolutions 19

• Kernel Size: the field of view of the convolution

• Stride: the step size of the kernel when traversing

the image.

• Padding: defines how the border of a sample is

handled.

• Input & Output Channels: A convolutional layer

takes a certain number of input channels and

calculates a specific number of output channels

2D Convolutions 20

1 4

0 3

2 1

1 2

2 4

0 6
4

Bias = 2

1014

Input

2D kernel

convolved

feature

3D Convolutions

[image from http://cs231n.github.io/convolutional-networks/]

• Convolution operation

• A convolution filter

is a square (or cubic) matrix

• It is first centered on a pixel

of the input image

• It produces a scalar value:

the dot product

between the filter

and the image region

around the pixel

• By mapping the same

procedure on all pixels

of the input image,

• a new image is produced

(i.e. a feature map)

3D Convolutions
• Convolution operations (on images)

• A convolution filter

is a square (or cubic) matrix

• In symbols

• where:

[image from http://cs231n.github.io/convolutional-networks/]

convolution operator

Input image (e.g. RGB)

Convolution filters

Feature Mapsi-th feature map

3D Convolutions 23

Input image Convolutional Filters Feature Maps

Transposed Convolutions

• Also known as Fractionally Strided

Convolutions (e.g. 1/2, 1/4 etc)

• Perform some fancy padding on the input.

• Not able to numerically reverse

convolution followed by down sampling

24

Sparse Connectivity 25

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑆𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Sparse connections due to small

convolution kernel

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑆𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Dense connections

Sparse Connectivity 26

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑆𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Sparse connections due to small

convolution kernel

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑆𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Dense connections

Dilated Convolutions 27

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑆𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Dilation = 0

Dilation = 1 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑆𝑥1 𝑥2 𝑥3 𝑥4 𝑥5𝑆𝑥0 𝑆𝑥6𝑆𝑥−1 𝑆𝑥7

Convolutions with Stride 28

𝑠5𝑠1 𝑠2 𝑠3 𝑠4

𝟎 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝟎

11 0 1 0

𝑠5𝑠1 𝑠3

≡

𝑠5𝑠1 𝑠3

𝑆𝟎 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝟎

𝟎 = zero padding

Stride 2

Stride 1

29

Receptive field or field

of view of the filter

(filter size, e.g. 5x5x3)

Output of filter #1

Output of filter #2
Output of filter #3

Output of filter #5

Output of filter #4

Each filter has

(5 ∗ 5 ∗ 3 + 1) = 76 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
and 75 local (in space= connections

to a neuron)

depth = 5

width = height =
𝑊−𝐹+2𝑃

𝑆
+ 1 = 32

𝑊 = 32 #𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
𝐹 = 5 #𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒
𝑃 = 2 # 𝑝𝑎𝑑𝑑𝑖𝑛𝑔
𝑆 = 1 # 𝑠𝑡𝑟𝑖𝑑𝑒

height = 32

Complexity of 3D Convolutional Layer

𝐹𝑥 ∗ 𝐹𝑦∗ 𝐹𝑧 ∗ 𝐾 ∗ 𝐻2 ∗ 𝑊2

((𝐹𝑥 ∗ 𝐹𝑦∗ 𝐹𝑧 −1) + 1) ∗ 𝐾 ∗ 𝐻2 ∗ 𝑊2

30

𝑊1 ∗ 𝐻1 ∗ 𝐷1

Number of filters 𝐾,

Filter spatial extension 𝐹𝑥 𝐹𝑦 𝐹𝑧
The stride 𝑆 ,

The amount of zero padding 𝑃.

𝑊2 =
𝑊1 − 𝐹𝑥+2𝑃

𝑆
+ 1

𝐻2 =
𝐻1 − 𝐹𝑦+2𝑃

𝑆
+ 1

𝐷2 = 𝐾

Usually 𝐹𝑧 = 𝐷1 and no padding is

applied on 𝑧 direction

Input feature map

Output feature map

Netscope CNN Analyzer

• https://dgschwend.github.io/netscope/#/preset/vgg-16

• VGG ILSVRC 16 layers

31

https://dgschwend.github.io/netscope/#/preset/vgg-16

Parameter sharing
• To limit number of parameters in Convolutional Layers.

• Using the example before

• a volume of size [32x32x5] has 5 depth slices, each of size [32x32]

• there are 32*32*5 (slide 20) = 5,120 neurons in the Conv Layer

• each neuron has a own 5*5*3 (filter) = 75 weights and 1 bias.

• This adds up to 5,120 * 76 = 389,120 parameters for Conv layer itself.

• How to reduce it ?

• Spatial correlation assumption: if one feature is useful to compute at some spatial position

(x,y), then it should also be useful to compute at a different position (𝑥2, 𝑦2).

• Solution: To constrain the neurons in each depth slice to use the same weights and bias.

• Only 5 unique set of weights, one for each depth slice, for a total of 5 slices*(5*5*3 weights

per slice) = 375 unique weights, (+5 biases).

32

Summary of Convolutional Layer

With parameter sharing, the layer requires

𝐹𝑥 ∗ 𝐹𝑦∗ 𝐹𝑧 ∗ 𝐷1 parameters per filter, for a

total of 𝐹𝑥 ∗ 𝐹𝑦∗ 𝐹𝑧 ∗ 𝐷1 ∗ 𝐾 + 𝐾 biases.

33

𝑊1 ∗ 𝐻1 ∗ 𝐷1

Number of filters 𝐾,

Filter spatial extension 𝐹𝑥 𝐹𝑦 𝐹𝑧,

The stride 𝑆 ,

The amount of zero padding 𝑃.

𝑊2 =
𝑊1 − 𝐹𝑥+2𝑃

𝑆
+ 1

𝐻2 =
𝐻1 − 𝐹𝑦+2𝑃

𝑆
+ 1

𝐷2 = 𝐾

Usually 𝐹𝑧 = 𝐷1 and no padding is

applied on 𝑧 direction

Depth wise separable convolution

• Consider 𝑑1 = 16 channels, 𝑤𝑓 = ℎ𝑓 = 3 each kernel (2D)  16 feature maps.

• Traverse these 16 feature maps with 𝑑𝑜𝑢𝑡 = 32, 𝑤2 = ℎ2 = 1 convolutions each

• This results in 656 = [16 ∗ 3 ∗ 3 + 16 ∗ 32 ∗ 1 ∗ 1] parameters opposed to the

4608 = (16 ∗ 32 ∗ 3 ∗ 3) parameters from non depth separable filtering.

34

Pooling Features 35

Convolved

Feature

Map

Pooled

Feature

Map

Projection

Pooling features 36

1 0.3

0.1 1 0.3 0.2

Max Pooling, 3:1

Average Pooling, 3:1

0.1

0.5 0.2

0.2 1 0.3 0.2 0.1

Summary of Pooling Layer

𝑁𝑜parameters

37

𝑊1 ∗ 𝐻1 ∗ 𝐷1

Spatial extension 𝐹
The stride 𝑆

𝑊2 =
𝑊1 − 𝐹

𝑆
+ 1

𝐻2 =
𝐻1 − 𝐹

𝑆
+ 1

𝐷2 = 𝐷1

Input Feature Map

Output Feature Map

Activation f Functions
38

Name Plot Function Examples

Unit Step ∅ 𝑧 = ቐ
0, 𝑧 < 0,
0.5, 𝑧 = 0,
1, 𝑧 > 0,

Perceptron variant

Sign (Signum) ∅ 𝑧 = ቐ
−1, 𝑧 < 0,
0, 𝑧 = 0,
1, 𝑧 > 0,

Perceptron variant

Linear ∅ 𝑧 = 𝑧 Adaline, linear regression

Piece-wise linear ∅ 𝑧 =

1, 𝑧 ≥
1

2
,

𝑧 +
1

2
, −

1

2
< 𝑧0 <

1

2
,

1, 𝑧 > 0,

Support vector machine

Logistic (sigmoid) ∅ 𝑧 =
1

1 + 𝑒−𝑧
Logistic regression, Multi

layer-neural networks

Hyperbolic Tangent ∅ 𝑧 =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
Multi layer neural networks

Rectified Linear Unit

(ReLU)
∅ 𝑧 = ቊ

𝑧, 𝑧 > 0
0, 𝑧 ≤ 0

Regression, approximation,

multi layer neural network

𝒛 = 𝒇(σ𝒊=𝟏
𝒎 𝒘𝒊𝒙𝒊 + 𝒃𝒊𝒂𝒔)

Most widely used activations 39

• Unit step

• Threshold

• Sigmoid Function

• Like a step function but smoother

• Best to predict probabilities

• Tan hyperbolic

• Stretched out version of the sigmoid

function

• ReLU

• Computationally efficient

• Function choice depends on the

characteristics of the data.

• For example Sigmoid Function

works good for classification

purposes, resulting in Faster

training and convergence.

• ReLU is good for approximation.

As it is simple so always start

from this if you don’t know the

data characteristics. Helps

against gradient vanishing

• We can also define custom

activations.

40

• The Softmax function, or normalized exponential function

• A generalization of the logistic function

• Squeeze the K-dimensional input vector of real values into values in

the range [0, 1].

𝜎 𝑧 𝑗 =
𝑒
𝑧𝑗

σ𝑘=1
𝐾 𝑒𝑧𝑘

, 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝐾.

Most widely used activations

Local Response Normalization

• Compensating the tendency of ReLu to output large values

41

Activation

Feature

Map

Normalized

Activation

Feature

Map𝑋𝑖𝑗𝑙 𝑌𝑖𝑗𝑙

𝑁𝑏𝑟(𝑙)

𝑌𝑖𝑗𝑙 =
𝑋𝑖𝑗𝑙

(𝛼 + 𝛽σ𝑘∈𝑁𝑏𝑟(𝑙)𝑋𝑖𝑗𝑙
2)γ

𝛼, 𝛽, γ are hyper-parameters

Layers of a Neural Network 42

• Neural network has three types of layers

• Input layer
• Can be from other neurons or feature inputs

• Age, height, weight, pixels in the images etc.

• Hidden layers (one or more)
• Real power lies here

• Adding more neurons to the network

• Output layer
• Gives the output we want to predict

• Probability of rain

• Object class

• Disease is fatal or not…

Neural Networks 43

• Notations

𝑥1

𝑥2

𝑥3

𝑥4

ℎ1
1

ℎ2
1

ℎ3
1

ℎ1
2

ℎ2
2

ℎ3
2

ො𝑦

𝑥𝑛, 𝑛 = {1, 2, 3, … }

ℎ𝑝
𝑚, 𝑚 = 1, 2, 3, … , 𝑝 = 1, 2, 3, …

Hidden LayersInput Layer Output Layer

Example of a Neural Network 44

• To predict if a person has to be

hospitalized given

• Age

• Gender

• Distance from hospital

• Income

• Number of General Physician (GP)

visits

• Let us suppose to train neural

network, which means to compute all

the weights so that predictions are

accurate.

• Consider to have

• Age = 65

• Gender = Female

• Distance, income and GP visit high

Age

Gender

Income

GP

Visits

Distance

Example of a Neural Network 45

Age

Gender

Income

GP

Visits

Distance
Hospitalized?

• To predict if a person has to be

hospitalized given

• Age

• Gender

• Distance from hospital

• Income

• Number of General Physician (GP)

visits

• Let us suppose to train neural

network, which means to compute all

the weights so that predictions are

accurate.

• Consider to have

• Age = 65

• Gender = Female

• Distance, income and GP visit high

y

y

Training neural networks 46

• In supervised learning an assumption is to

have a relatively large labeled dataset.

• Feed all the samples as inputs to get an

output. Called forward propagation or

inference run outputs.

• At start the weights can be randomized or

predefined depending on the applications

scenario.

• The result ො𝑦 is compared with ground truth

output 𝑦.

• The task is to make the output value ො𝑦 to

be as close to 𝑦 as possible reducing the

error expressed as Loss functions 𝐿(෤𝑦, 𝑦).

Forward Propagation

= error

Forward Propagation
• Let's do it (in a graphical way)

sqr

L

sub

y sum

c

dot

wmul

0.5

sum

abs

sum

c dot

W x

Element-wise loss, with ReLU as non-linearity

47

Training neural networks 48

Back Propagation

y

y

• Go back and adjust the weights slowly. Aim is

𝑬𝒓𝒓𝒐𝒓 𝑻 < 𝑬𝒓𝒓𝒐𝒓 𝑻−𝟏

• Repeat this process until the error we get is very

small.

𝐥𝐢𝐦
∈→𝟎

𝑬𝒓𝒓𝒐𝒓𝑻 < ∈

Backward Propagation

sqr

L grad L

sub

mul

y sum

c

dot

w

dot

mul

0.5

sum

abs

div

sum

c dot

W x

mul

2

mul

1 mul

1

mul

0.5 sum

mul

1mul

dot

1

mul

1

49

• Let's do it (in a graphical way)

Element-wise loss, with ReLU as non-linearity

Backpropagation 50
C

o
s
t

F
u

n
c
ti

o
n

(e
rr

o
r)

Predicted output

(෡𝒀)

𝑒𝑟𝑟𝑜𝑟=
1

𝑚
σ𝑖=1
𝑚 (ො𝑦𝑖 − 𝑦𝑖)

2

Predicted output

Actual output

Total no of samples

Cost function

Backpropagation 51

• Brute force

• Try all the possible combination of weights.

• Plot the cost function.

• Use the weights which result in smallest error.

• Sounds simple but will take too much time !!!

C
o

s
t

F
u

n
c
ti

o
n

(e
rr

o
r)

Predicted output

(෡𝒀)

𝑒𝑟𝑟𝑜𝑟=
1

𝑚
σ𝑖=1
𝑚 (ො𝑦𝑖 − 𝑦𝑖)

2

Predicted output

Actual output

Total no of samples

Cost function

Backpropagation 52

• Enters the gradient descent

Learning rate

• Big learning rate

• Fast

• May never converge.

• Small rate.

• Lots of small steps

• Will converge for sure

Learning rate compromise

Backpropagation 53

• Enters the gradient descent

Learning rate

Use adaptive learning rate!

Gradient descent in action 56

• Example: Finding best linear fit to a set of points.

https://cs.stanford.edu/people/karpathy/con

vnetjs/demo/cifar10.html
57

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

