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Concepts

Self-adaptation: runtime action changing structure, functionality and/or
parameters of a system, according to environment, user or self-sensing info.

[F.D. Macias-Escriva, et al. “Self-adaptive systems: A survey of current approaches, research challenges and applications” In Expert Systems
with Applications, 2013]

-

System self-adaptation: combination awareness and reconfiguration.
CERBER Reconfiguration decided inside the system itself by a self-adaptation manager,
which has some degrees of freedom when deciding which modifications to apply.



Triggers for Adaptation

ENVIRONMENTAL AWARENESS: Influence of the environment on the system, i.e.
daylight vs. nocturnal, radiation level changes, etc.

‘ Sensors are needed to interact with the environment and capture conditions
variations.

USER/EXTERNALLY-COMMANDED: System-User interaction, i.e. user preferences,

commands from SoS managers (the boss), etc.
Proper human-machine interfaces are needed to enable interaction and capture

commands.

SELF-AWARENESS: The internal status of the system varies while operating and
may lead to reconfiguration needs, i.e. chip temperature variation, low battery.
Status monitors are needed to capture the status of the system.



Types of Adaptation

FUNCTIONALITY-ORIENTED:
To adapt functionality because the CPS mission changes, or the data being

processed changes and adaptation is required.
It may be parametric (a constant changes) or fully functional (algorithm changes)
s
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REPAIR-ORIENTED:

For safety and reliability purposes, adaptation may be used in case of faults.
Adaptation may add self-healing or self-repair features. e.g.: HW task migration

for permanent faults, or scrubbing (continuous fault verification) and repair.

EXTRA-FUNCTIONAL REQUIREMENTS-ORIENTED:
Functionality is fixed, but system requires adaptation to accommodate to changing

requirements, i.e. execution time or energy consumption.
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Autonomous System Adaptation

Autonomic Computing Self-adaptive systems

[Horn 2001; Kephart et al. 2003; March 2004] Self-*
Address complexity and adaptation properties
needs of future applications [Salehie et al. 2009]
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Towards more robust and autonomous systems

Levels of autonomy With reconf. Devices, e.g. FPGAs
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Source: ‘HW autonomy and space systems’, Steiner & Athanas
|IEEE Trans on Automation Control, 2009
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Adaptation Loop
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Adaptation Loop

Adapt:
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Adaptation Loop: Generalities

Who makes what?

Adaptation * These components are somewhat
monitors present in all type of adaptable systems

* In the CPS domain, they all are
contained in the CYBER part.

KPl models * They need to coexist with the mission
tasks.

Adaptation
fabric

» Adaptation may also require:
* Predictability (how much does it take)

« Safety (it cannot die while reconfiguring)

Adaptation Adaptation * Security (secured sensing, secured
engine manager bitstreams)

* Real-time constraints (adapting too late
can be critical)

10



Adaptation Loop: Monitors

Adaptation Context awareness (PHY):
monitors  Sensor fusion for multiple and,
possibly, heterogeneous sensors
e Can be at CPS or CPSoS levels

Adaptation

fabric KPI models

Self-awareness (CYB):
* Performance sensors
* Energy sensors
* Fault detectors

Adaptation Adaptation
engine manager

Heterogeneous fabrics require a
variety of CYB sensors =
homogeneization is required.




Adaptation Loop: KPl Models

Models estimate factors that

might trigger adaptation, i.e.

e motor consuming too much
power (PHY);

e task going too slow (CYB);

* battery low (CYB).

Adaptation
monitors

Adaptation

fabric KPI models

Lightweight enough to run on the
CYB part.

Features:

* CYB models are architecture
specific,

* PHY models are application
dependent.

Adaptation Adaptation
engine manager




Adaptation Loop: Manager

According to predefined criteria,
Adaptation the manager must evaluate the
monitors situation and try to optimise
misbehaving parameters, i.e. Is
there a better energy efficient
Adapta.tion KPI models solu-tio-n? :
fabric Optimization problem, solved by
different means:
* Non-Linear programming
* Polyhedral approaches
* Genetic algorithms
* Deep learning

Adaptation Adaptation
engine manager

It must be dynamic, with sufficient
Dynamic response




Adaptation Loop: Adaptation Engine

Adaptation
monitors

Adaptation
fabric

Adaptation
engine

KPI models

Adaptation
manager

Provide means to perform fabric

adaptation.

* Fabric-dependent

* Don’t take decisions, they do
what the manager states

SW:

* Dynamic task assignment;

* Symmetric Shared-memory;
Task to core assignment in NoC.

HW:

* Virtual Reconfiguration (VRC);

* Dynamic Partial Reconfiguration
(DPR).




Adaptation Loop: Adaptation Fabric

Adaptation
monitors

Adaptation
fabric

Adaptation
engine

KPI models

Adaptation
manager

The addressed components must
contain sufficient flexibility to
allow adaptation.

HW adaptation granularity:.
* Tiny elements = fine-grain
* Functions = coarse-grain

* Mixed-grain approaches

HW fabric types:

* DPR on Large regions =2 slots,
Reconfigurable Regions (RRs)

* VRC on large functions = CGRA

* DPR or VRC on small areas of
large sections - HW overlays




Example: Evolvable HW

An Evolvable HW System based on
a single processing systolic array ’
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Example: Evolvable HW
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Example: Evolvable HW system
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Adaptation Loop:
* Adaptation Fabric: Systolic array overlay
* Monitor: Fitness compute unit

KPI: Sum of absolute differences (to minimise)

Adaptation Manager: Genetic algorithm

Adaptation engine: DPR on FPGA frames

Results

18

Fast evolution: > 140.000 evals/sec, total: 1 sec
Array works at 400 Mpixels/sec
Small: 2 CLBs per PE

Generalizable (noise filtering, edge detection,
image enhancement, etc.)

Scalable (grows or shrinks)
Self-healing
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Scalability and evolution for increased fault tolerance

Evolution with accumulated faults and scaling strategy

Fault 1 Fault 2 Fault 3 Fault 4 Scale to 4x5 Scale to 5x5 Fault 5

IR A8 AN A B

Fault 6

Fitness

100000

. | 1—\
1 o [ ——
N [ ]

10000 T
o 100000 200000 300000 400000 500000

Generation

Example of evolution with accumulated faults (threshold
at 2x initial fitness)

A4x4 recovers from 2 faults in average gy | ifetime of the system extended 6 times
A 7x7 recovers from 12 faults in average



* Adaptive CPS: The CERBERO approach
* Big Picture. The CERBERO Adaptation Loops at CPS and CPSoS levels
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CPS Self-Adaptation in the CERBERO Project
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CERBERO CPS & SoS Self-Adaptation
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CERBERO CPS Self-Adaptation

 Cross-layer Approach = CPS & CPSoS level

* All elements in the adaptation loop are included:
* Monitoring it

aare

» Context-awareness = Multiple sensors + Sensor Fusion

» Self-awareness 2 HW and SW tasks common monitoring
infrastructure—> PAPI

* KPI extraction = PHY and CYBER runtime models

* Adaptation management = Dynamic task management
- SPIDER

» Adaptation fabrics

* HW adaptation = mixed-grain, multiple solutions

* ARTICo3, MDC, Just-In-Time composition, and
mixed approaches

» SW adaptation - Task migration between cores

CERBER 23
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Monitors and KPIs in CERBERO

ADAPTATION MONITORS: hardware/software trackers for the status of the fabric

System Layer

Cross Layer (CPSs)

Adaptation

Adaptation Englne
/_ Fauiics

Adaptation
Engine

Adaptation
Engine

SW-Based

Processing

Adaptation

Monitors
CERBER&

HW-Based
Processing

Adaptation
Monitors

Sensor
Layer

Adaptation
Monitors

CYBER
CYBER
CYBER
Requirements APE':;g;ion

PHYSICAL

PHYSICAL

PHYSICAL

Hybrid

v

Model

System

Environment

N|

I
,
7 Cross Layer

(CPSo0Ss)



Unified access to Monitors: PAPI

PAPI (Performance API): Standard SW approach for performance
Extension to HW
Extension to energy and fault monitors

Adaptation Engine Embedded Models

¢ A Measurements
Adaptation Fabric i Linux Based OS

Reconfigurable Hardware

1
jmmmemmsmmsmmsmssmsssssssssssedeaeee————— fremmmssssscsssssssssssssssssf e ddeese e me— e,
i 1 ]

=|| PAPI Component 2
Event Trigger 1 :
1
— =|| PAPI Component 1
L}
1

Adaptation '
Monitors
CERBER 25
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Execution model for ARTICo3

" Model estimations vs. real measurements
o Kernel: AES-256 CTR
o Platform #1: HiReCookie Node (table) ng

o Platform #2: KC705 Board (table and figure) Feore(®) = Prase (1) + Fama (0 +Zl"‘”f(t) Fe )

00 peeevveenee ........... SR .......... e PR e : Pmem(t) — Pmem,s + Pmem,d(t)
: Reference :
1060 1 block, 326 |
2blocks, BB | Value (mW)
1000 3blocks, 6kE | Parameter
950 4 blacks, 12648 | | KC705 HiReCookie
5 blocks, 160KB | ©
500 | -  blocks, 192kB Py 6.93 5
% o N R i ot R e L (- T P . T T
= ; It 38.66 44.55
= o
@ Y
i Py 31.57 22.21
Prem.s 792 91.6
g Ppnem.q (read) 768 133.4
- : : ; , ; : Prema (Write) 1368 101.25
1 2 3 4 7 &}
CERBER Time {ms
(ms) 26




Self-Adaptation Management: CERBERO style

ADAPTATION MANAGER: high-level entity with run-time decision-making capabilities

\ CYBER PHYSICAL

~_ CYBER PHYSICAL
CYBER PHYSICAL
. Application
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System Layer S ross Layer (CPSs) Model
_______________________________ Soocooooooood
Computing Layer
: a System
Adaptation dap . 1 dap . =
: 2 |
Engine s ! 0 >
1 I
Kpi | TS =~ | Heterogeneous | :_ e ————y Environment
1
Embedded 1| sw-Based HW-Based ; Sensor : - |
Models : Processing Processing 1 Layer 1 "
T T e T R Nl !
Adaptation Adaptation || ||
Monitors Monitors ’ [
4 ’
_, _, Cross Layer
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Runtime Management Systems

* WHO:
* OpenMP

[OpenMP 4.5 Specification, Nov. 2015, www.openmp.org/wp-content/uploads/openmp-4.5.pdf]

* LLVM Runtime

[compiler-rt.llvm.org] EVALUATE

* OpenCL

[OpenCL Specification Version 2.2, online: www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf]
* WHAT:

* Deploy applications on the fly on the available computational, a

communication and storage resources, by using greedy strategies.
COMPARE

e WHY:

e Functional needs
* HOW:

* Functional Information by means of imperative MoCs. f»

s DECIDE



Energy vs. Execution Time vs. Fault Tolerance

Run-time configurable trade-off between energy, computing performance and fault tolerance

40 Increased fault tolerance
(simple, double, triple
* redundancy)
30
25
=
. E
Max. Acceleration = 20
AND energy efficiency 2
when FPGA is fully busy ~ "° i N : : : : : :
I . g =t Simplex 1 work-tem per work-group
A" : ' o S Y| =——t——DnR 1 work-tem per sweark-group -
- it . || ——TMR 1 work-tem per work-group
sk "-"' L _________ R | =& Simplex 2 work-tems per work-aroup |
: : : | =B DMR 2 wark-items per work-group

1 : : :
1 : . : ThiR 2 wwark-itemns per wark-grougp
L i T T T

i I I
1 10 20 30 40 il il 70 g0 a0
Execution Time (ms)

Good scalability when increasing
— the number of HW accelerators
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Energy vs. Quality of Service

o

4 64x64 blodks [u]]
SEEES

Energy
.O.CJS
g 2 3

%

Run-time configurable trade-off between energy and computation precision

Decreased Energy

Consumption per

= |egacy_luma@182MHz -19%

== reconf_lume@182MHz

reconf_luma_mF (8@182MHz, 7@179MHz;

5@172MHz3@167MHz)

8 7 5 3
#of taps

Decreased QoS

Energy per 4 32x32 blocks [u] ]

0.240

Decreased Energy

49%

=y -8%
—

—|egacy chromae@193MHz

=@=reconf chroma@193MHz

3@186MHz,2@180M Hz)

4 3 2
#of taps

— >

Decreased QoS



Modeling Runtime Multi/Many-core

Framework Adaptation Architecture
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SPIDER
* WHO: * WHY:
* SPIDER * Functional & Non-Functional Needs
* WHAT: « HOW:
* Deploy applications in HW and SW * Parameterized Dataflow MoCs
fabrics on the fly on the available

e KPI Runtime Models

 Model of the Architecture
31
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Self-Adaptation Management: CERBERO style

ADAPTATION ENGINES: hardware/software changing the fabric configuration

CYBER PHYSICAL
CYBER PHYSICAL
CYBER PHYSICAL
. Application
Requirements Graph
System Layer Cross Layer (CPSs) Model
System

KPIs

Adaptation
Fabrics

Adaptation

Engine

Adaptation
Engine

Adaptation
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Embedded
Models

SW-Based
Processing

HW-Based
Processing

Sensor
Layer

Hybrid

Environment

y

A

Adaptation

Monitors

Adaptation

Monitors

N|

v

/
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VRC & DPR

VRC -2 Virtual Reconfigurable Circuits S N —
* High reconfiguration speed

_ — -
* Lower operation speed (mux and size) B —lH
* Higher Area Overhead B N _:: -
* Technology independent (ASIC or FPGA) E:
-TH
DPR - Dynamic and Partial Reconfiguration []
* Lower reconfiguration speeds o |\|/

* Better operation speed (no mux/less logic) —
» Better Resource Utilization (no dark logic) —
* Higher Flexibility and Scalability
* Technology dependent (FPGA)
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Self-Adaptation Management: CERBERO style

HETEROGENOUS ADAPTATION FABRIC: computing and sensing resources

CYBER PHYSICAL
CYBER PHYSICAL
CYBER PHYSICAL
. Application
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o AYe D O
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Adaptation fabrics addressed in CERBERO



Adaptation fabrics addressed in CERBERO
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Adaptation fabrics addressed in CERBERO
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Adaptation fabrics addressed in CERBERO
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Adaptation fabrics addressed in CERBERO

Coarse-Grain Mixed-Grain
ARTICo3 MDC Logic A3+MDC

‘Accelerator Wrapper
. Registor# ] [ Gonora Purpose g Register® | [ Goneral Purpose
5 Register #1 Registers. M o e Register #1 s M
w 2 Rogister 2 : H low power (clock gated) w 2 Rogistor #2 :
wose | | [ Register #M-1 < CGRsubstrate | . § f Register #M1-1
mose | | £ 2 mode
wo | | € © Kernel \ P §
wams | | A MemoryBank#0 | By <>,  Custom Logic \ e | | £ ko & Memory Bank 0 [&,
& \ &
oo | | & Adeross A,| Memory Bank#1 | B ~—»§ D i o | & ddrese ._.| A,| Memory Bank #1 | B,
o Translation| e 1
s | 48 Al y |8 \ san | |8 Aler T
| |—|—|_| HE ! v | |& |_|—|_| |
Memory Bank #2"1 [B; = 1 Ayz.1| Memory Bank #27-1|By.4
\
i
N \
N SRAM-Based FPGA | \ SRAM-Based FPGA
\ . \
N configurator \
N Control Bus (AXI4-Lite) ' Control Bus (AXI4-Lite]
\
N L \
\
\
\
|
\
RAM <" * RAM
74 C ion registers I o
Register #0 Genefal Purpose ] 1 4
Register #1 Registers M, '
|~ I3 | = |
= 7] Register #2 TN N ) ‘\ S
u- T a \ Fr | Registers |
= » Register #M-1 | =
P Shuffler 3 |8 \ H Shuffler Accelerator
] a Local Memot N3 D} - | Local Logic
H g £ Y S H g Memory
|2 -3
é .‘-—’ % Ay | Memory Bank #0 [ By f«—> S| CGR accelerator IE E
h >| w 4
< c @ i ) o < c b i
HIEI £ [Registers | Accelerator Ai| Memory Bank #1 | By [«—>g HEIERII £ [Registers | Accelerator
N EE R E L | T - EENEE I E g [
lemoi [} L} lemon
HalEf AR E k4 - - £ Back-end HalEHIERIRE ry
G| || E . oo [Az| memory Bank #2718z f«—i= || gl || £ . e
v
Flash Registers Flash [Registers |
I_I Accelerator Accelerator
erformance Fault Local Logic erformance Fault Local Logic
Monitor Monitor Memory 3 5 Monitor Monitor Memory




Adaptation fabrics addressed in CERBERO

ARTICO3 Coarse-G ra?m Mixed-Grain
MDC Logic A3+MDC

Accelerator Wrapper
Regiter #0 2 -
- e el W ) ] [
. < agister st "
e g Rogit 2 S H low power (clock gated) 3 w ﬁ Register #2 :
moce | | € : 3 CGRsubstrate |\ - T Tegor AT
adar g Kernel '.‘ e §
vy |t o Ao| MemoryBank#0 | By <>, Custom Logic \ wioa | | = e~ Aa | Memory Bank #0 [ By
ot | | & o \ g
3 |ttt A] Memory Bank#1 1By H D \ g | & Addross -—-| Aq| Memory Bank #1 | B,
s | | O | T @ o e | |8 ] & [ T !
e | |2 — — |§ ! B B B
" = - I—'—'—I
Memory Bank #2"-1|B, |l Az.4| Memory Bank #2"-1|By.
N i
\
- 1 N
\_ SRAM-Based FPGA ! .‘ . SRAM-Based FPGA 1
N\ 1
N configurator \ N
\ Control Bus (AXH4-Lite) ' 4 Control Bus (AXI4-Lite)
N ¥ '
[} \
\
\
'
|
\
RAM < n RAM
74 C i r\ﬂis(ers I o
Reglster #0 Geneal Purpose ] 1 \
Register #1 Registers M, | '
= </ o '
;: ] Register #2 RN E \ 5|
\
e H Register #M-1 & U <
® M o \ =
& Shuffler 2 & \ H Shuffler
H c € Local Memory N D1 5|
] 8 £ B s
é £ - Ay | Memory Bank #0 [ By f«—> S| CGR accelerator g =
4 > w i 3]
< [ @ Regi: [2) o : -
HEE N gl LRegsten ] 1 rorator Ar| Memory Bank #1 | By {«—>{u 2[5 o 2|| | [Regsters]
;. T E 8 E| |0 Local Logic S |5 £ 5=|15 Tocal Acselerator
2 So c||o I I O [ea ® © = & E ocal Logic
K ER: ° 5 =4 Memory ' ' ' ' =. 39 o e Memor
a > [T} I o £ |wn Back-end o < £ SO0l l5 Y
K @ W € o ) o W 2
4 = PP |A1.1| Memory Bank #2"-1 |B,_1|-—>2 H 4 £ e o o
v
Flash IMI Accelerator Flash | Registers |
e;nrf::ance Fault Local Logic erformancy Fault Local Aotcolu::lur
onitor Monitor Memory 35 Monitor Monitor Memory 9




e Deep Dive into CERBERO HW Adaptation
* ARTICo3
* MDC-compliant CG adaptation
* Mixed-Grain Adaptivity
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ARTICo? - Transaction Modes
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MDC tool - Dataflow to HW Mapping
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MDC Tool - Coprocessor Generator

Co-Processor Generator:

generation of ready-to-use Xilinx IPs
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CG Reconfiguration: Adaptation Types in MDC

Functional

Non
Functional
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CG Reconfiguration: Adaptation Types in MDC
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CG Reconfiguration: Runtime KPI Trade-Offs
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[ESL17] Carlo Sau, Francesca Palumbo, Maxime Pelcat, Julien Heulot, Erwan Nogues, Daniel Menard, Paolo Meloni, and Luigi Raffo. “Challenging the Best HEVC Fractional
Pixel FPGA Interpolators with Reconfigurable and Multi-frequency Approximate Computing” in IEEE Embedded Systems Letters, vol. 9, no. 3, pp. 65-68, Sept. 2017.
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* CERBERO Beyond SoA & Take-Out
* Key Advancements and Integration
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Mixed-Grain Adaptivity: SOA

Shift_ctr
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T 153 s 2 116 I [s1 |14 10 150
. . shift_in*
outputselector + FF(4bit-register)
shift_out®

*Dedicated Line

[K. Inoue, et al. “A Variable-Grain Logic Cell and Routing Architecture for a
Reconfigurable IP Core”. In ACM Transactions on Reconfigurable Technology and
Systems, 2010]

The Variable Grain Logic Cell (VGLC) architecture is based on a 4-bit
adder including configuration bits, and can perform operations
such as arithmetic logic, random logic, and multiplexing in any
application
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Mixed-Grain Adaptivity: SOA

Shift_ctr

[K. Inoue, et al. “A Variable-Grain Logic Cell and Routing Architecture for a

l-% %}; lﬁc _ % IM_L: Reconfigurable IP Core”. In ACM Transactions on Reconfigurable Technology and

AN L SR | Sems om0l o |
o » O The Variable Grain Logic Cell (VGLC) architecture is based on a 4-bit

] %tgﬁ BLE adder inclu_ding cjonfigyration bits, apd can perfqrm .oper.ations
IR S e o PO N such as arithmetic logic, random logic, and multiplexing in any

Sh\(LnT| outputselelctorli- FFi4bit|—register) % a pplication

E:Cunfiguration Memory bit o3l o[ o1 ool

*Dedicated Line

[A. Thomas, et al. “HoneyComb: An Application-Driven Online Adaptive

Reconfigurable Hardware Architecture”. In International Journal of S .
Reconfigurable Computing, 2012] T mowtsausie —’
HoneyComb is an adaptable dynamically reconfigurable

cell array. Cells are composed of a routing unit and a

functional module. Routing units, responsible of connecting Puncional
neighbours, compose the reconfigurable communication

HoneyComb cell structure

network. Functional modules can be enabled, disabled, or

modified using DPR.
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Mixed-Grain Adaptivity: SOA

FT LD, Fault Prone Area [I. Sourdis, et al. “Desyre: On-demand system reliability”. In Microprocessors and
Microsystems, 2013].

The DeSyRe Soc contains different sub-components surrounded by
- T reconfigurable interconnects. If a fault occurs, the sub-component
can be replaced: with re-routing, retargeting functionalities on an

unused sub-component, or by a functionally equivalent instance
e - implemented in FG reconfigurable hardware.

MiddleWare
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Mixed-Grain Adaptivity: SOA

Fault Free Area |

Fault Prone Area

DsSP

RISC

Custom
i Block

MiddleWare

RISC

DSP

Custom
Block

[C. M. Diniz, et al. “Run-Time Accelerator Binding for Tile-Based Mixed-
Grained Reconfigurable Architectures”.

Logic and Applications, 2014]

Mixed-grained reconfiguration is used within the tiles of
tile-based processor. Each tile consists of multiple CG and

FG reconfigurable elements.

[I. Sourdis, et al. “Desyre: On-demand system reliability”. In Microprocessors and
Microsystems, 2013].

The DeSyRe Soc contains different sub-components surrounded by
reconfigurable interconnects. If a fault occurs, the sub-component
can be replaced: with re-routing, retargeting functionalities on an
unused sub-component, or by a functionally equivalent instance
implemented in FG reconfigurable hardware.

e Task allocation, N Custom Instructions ‘-’\.
\ Custom Instruction Selectlon / \__(set of implementation versions) \/

Conference on Field Programmable (] Legend: Reconfigurable elements

Section FG: Fine-grained
PRC: Partial Reconfigurable Container

TI: Tile interconnection

(Run-Tlme Accelerator Bmdm;D CG, Coarse-grained

Mixed-grained reconfigurable arra\y\

Tie| |Tie| ./ [C,Gﬂ‘j G 1—&@
EFD—D'—JI “0|1|2\3|4|?|s|7|‘
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. [T 1 Tile

-
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Self-Adaptation & Mixed-Grain: Beyond SoA



Self-Adaptation & Mixed-Grain: Beyond SoA

Partially reconfigurable CG
arrays, with identical
Processing Elements

CERBERO Mixed-Grain Support
ARTICo3 + MDC
Partially reconfigurable slots of
the FPGA (ARTICo3 compliant)
filled with heterogeneous
application specific CG
datapaths (MDC compliant).
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Self-Adaptation & Mixed-Grain: Beyond SoA

Partially reconfigurable CG Lack of self-adaptivity support
arrays, with identical for heterogeneous
Processing Elements environment

CERBERO Mixed-Grain Support CERBERO Self-Adaptation

ARTICo3 + MDC Manager
Partially reconfigurable slots of Build proper hardware
the FPGA (ARTICo3 compliant) abstractions fed with real time
filled with heterogeneous monitored and sensed data, to
application specific CG enable self-adaptive behaviours.

datapaths (MDC compliant).
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Self-Adaptation & Mixed-Grain: Beyond SoA

Partially reconfigurable CG Lack of self-adaptivity support Lack of frameworks to
arrays, with identical for heterogeneous partition functionalities and
Processing Elements environment design Processing Elements

CERBERO Mixed-Grain Support CERBERO Self-Adaptation CERBERO Tool Set
ARTICo3 + MDC Manager
Partially reconfigurable slots of Build proper hardware CERBERO Tool Set is specifically
the FPGA (ARTICo3 compliant) abstractions fed with real time conceived to support designers
filled with heterogeneous monitored and sensed data, to in the different phases of
application specific CG enable self-adaptive behaviours.  deployment, from partitioning
datapaths (MDC compliant). (DSE and automatic

mapping/scheduling) to
customization (HLS and
deployment)

CERBER& 48



Mixed-Grain: The Best of Both

ARTICo3
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Mixed-Grain: The Best of Both

ARTICo3
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Mixed-Grain: The Best of Both

ARTICo3

Max Troughput
Max QoS
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)
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Multi-Grain Adaptivity

Control Bus (AXI4-Lite)
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Tutorial:
Multi-Grain Reconfiguration
for Advanced Adaptivity in

Multi-Grain Adaptivity

Control Bus (AXI4-Lite)
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Adaptivity Support: CERBERO Tool Set

* CERBERO Tool Set P — - =T End User
* Design environment to ‘ ongolng interaction
model, explore, deploy SAGE
and verify complex AOW DynAA System Model
H (UML/SysML)
adaptive CPS
* Address the lack of ST
integrated toolchains e | Applicaton
capable of: LJ P
* Spanning across layers i | =
« Dealing with adaptivity and W e Runtime Support
heterogeneity |
* Providing system in the loop F —
CO'S|mUIat|0n MDC ARTICo? JITHW i Implementation
__ ) (HW Abstraction)
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Design-Time Support 4 HW Run-Time Adaptivity
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Design-Time Support 4 HW Run-Time Adaptivity
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Design-Time Support 4 HW Run-Time Adaptivity
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HW Run-Time Adaptivity
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Self-Adaptivity Challenges & CERBERO solutions

Definition of Complex
Adaptive CPS
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Self-Adaptivity Challenges & CERBERO solutions

Definition of the
Adaptive Infrastructure

CERBER& 59



Self-Adaptivity Challenges & CERBERO solutions

Definition of the :-Imtplementatloncof an Support Self-
Adaptive Infrastructure ererogeneous Lross- Adaptiveness
Layer Infrastructure

CERBER& 59



Self-Adaptivity Challenges & CERBERO solutions
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Self-Adaptivity Challenges & CERBERO solutions

Management of Adaptive
Infrastructure
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