
The CAPH Primer

J. Sérot

June 27, 2017

CAPH

Introduction

This document is a short introduction to the CAPH programming language and associated toolset. It is divided
in three parts.

Part 1 gives a short, informal introduction to the concepts and syntax of the language.

Part 2 introduces the CAPH integrated development environment (IDE). This IDE can be used to familiarize
with the language and explore the basic functionalities such as displaying programs as data-flow graphs (DFGs)
and simulating their behavior.

Part 3 goes a bit further and describes how to use CAPH in a command line based environment and to
interface to existing third-party tools, such as C++ compilers and VHDL synthetizers.

1

Part I

The Caph language

2

Chapter 1

Dataflow programming

CAPH is based upon a strict dataflow model of computation : Applications are described as networks of
computational units, called actors, exchanging streams of tokens through unidirectional, buffered channels.
Data to be processed is simply “pushed” in the input ports of the network and results are collected at output
ports. Execution occurs as tokens litteraly “flow” through channels, into and out of actors.

This model of computation is illustrated on a very simple example in Fig. 1.1. The dataflow network operates
on unstructured streams of tokens carrying integer values. For each input token carrying value x, it produces
a result token carrying value (x + 1) × (x − 1). For instance, if the input stream (provided to the dup actor,
through the i input channel) is

1 2 3 4 ...

the the output stream (produced by the mul actor, on the o output channel) will be

0 3 8 15 ...

DUP

INC

MUL

DEC

oi

Figure 1.1: A very simple dataflow network

The network of Fig. 1.1 involves four simple actors. Actor inc (resp. inc) adds (resp. substracts) 1 to
each element of its input stream, actor mul performs point-wise multiplication of two streams and actor dup

duplicates its input stream.
To understand what really “happens” when it is “executed” we need to attach a semantics both to actors

and to the channels connecting these actors.

The semantics of actors will be given as a set of firing rules describing exactly when an actor executes
(“fires”) and what happens then. In this first example, the firing rule is the same for each actor and it can be
stated as : whenever a token is available on the channel connected to each input port then read (“consume”)
this token, compute the result(s) from the associated value(s) and write (“produce”) the token(s) carrying this
(these) result(s) on the channels connected to the output port(s)1.

1We will see latter that CAPH allows more complex rules (and hence more sophisticated behaviors) to be expressed.

3

The semantics of channels is simple : they will be viewed as FIFOs (First In First Out) buffers. In the
final implementation, the size of theses FIFOs will obviously be an important parameter. But for now, let us
consider that they are essentially unbounded.

1.1 From sketch to code

There’s a long way from the rather “informal” description of an application as given in Fig. 1.1 to a FPGA
configuration performing the described functionnality on a stream of values.

The main steps in this path are illustrated in Fig. 1.2. These steps will be discussed in part 2 and 3 of this
document. Let’s focus for the moment in the initial step, which is writing the source code of the application
using the CAPH language.

Source

Code

Front-end (Parsing,

 type checking)

Abstract

Syntax Tree

Elaboration

SystemC

Back-end

VHDL

Back-end

.cpp, .h .vhd

C++ Compiler

executable

Synthesis

Bit Stream

Intermediate

Representation

B
ac

k
 A

n
n

o
ta

ti
o

n
s

(F
if

o
 s

iz
e)

FPGA

Graph

Visualizer

Reference

interpreter

 Compiler

Figure 1.2: The CAPH design flow

1.2 Writing the source code

Let’s write in CAPH the description of the application depicted in Fig. 1.1 in file simple.cph.

We start by declaring the input and the output of the network :� �
stream inp : unsigned<8> from ” sample . txt ” ;
stream outp : unsigned<8> to ” r e s u l t . txt ” ;� �

The keyword stream introduces an I/O declaration. Each I/O has a name, a type and a description. Here,
we declare

4

• inp to be a input, with type unsigned<8>, i.e. unsigned 8-bit integer, taking values from a a file named
sample.txt2.

• outp to be an output, also with type unsigned<8> putting values in a file named result.txt.

Concerning syntax, note that each declaration ends with a semi-colon.

The next step consists in describing the network of actors. Basically, this involves specifying which actors
appear in this network and listing the connexions between these actor (“wiring” the network). In CAPH3, this
is done in a purely textual manner, by naming wires and viewing actors as functions from wires to wires.

In this particular case, we start with the following declaration :� �
net (x1 , x2) = dup inp ;� �

This declaration, introduced by the net keyword actually has two effects :

• first, it creates, in the network described by the program, a node named dup,

• second, it respectively binds the input of this node to the wire named inp (which, in this case is the input
wire of the whole network) and its outputs to two wires named x1 and x2.

We can now proceed (going “from left to right” in the graph of Fig. 1.1), with the following declarations :� �
net y1 = inc x1 ;
net y2 = dec x2 ;� �

The first declaration insert a nodes name inc, binding its input to the previously defined x1 wire (i.e. the
first output of the dup node) and its output to a new wire named y1. The second one does a similar thing with
node dec and wires x2 and y2 respectively.

A last declaration inserts the mul node, connecting its inputs to the output of the inc (resp. dec) node (by
means of wires y1 and y2) and its output to the global output outp :� �
net outp = mul (y1 , y2) ;� �

Note that the last three declarations could have been combined into a single one by writing :� �
net outp = mul (inc x1 , dec x2) ;� �

Which style is better – with or without explicit naming of intermediate wires – is essentially a matter of
taste since both will lead to exactly the same network.

Together, the set of stream and net declarations introduced above completely determines the static stucture
of the actor network4.

We now have to define the dynamic behavior of the actors appearing in this network.
Let’s start with the inc actor. Its behavior is specified by the following declaration :� �

1 actor i n c
2 in (i : unsigned<8>)
3 out (o : unsigned<8>)
4 rules
5 | i : x −> o : x+1;� �

This declaration is composed of two parts : The first part (the interface, lines 1–3) gives the name of the
actor and lists its inputs and outputs (giving a name and a type to each of them), The second part (lines 4–5)
specifies the behavior of the actor, by listing all the associated firing rules. Here, there’s only one rule5 and it
can be read as follows : whenever there’s a token, carrying a value x, available on input i then read (consumes)
this token and write a token carrying value x + 1 on output o.

The definition of the dec actor is very similar :

2As said above, this file will be used for simulation.
3And for reasons which are advocated in the reference manual [1].
4In other words, its topology
5Each rule starts with a leading |.

5

� �
actor dec

in (i : unsigned<8>)
out (o : unsigned<8>)

rules
| i : x −> o : x−1;� �

The mul actor has two inputs and a single input. This is reflected in its interface and in the format of the
firing rule :� �
actor mul

in (i 1 : unsigned<8>, i 2 : unsigned<8>)
out (o : unsigned<8>)

rules
| (i 1 : x , i 2 : y) −> o : x∗y ;� �

The interpretation of the firing rule for the mul actor is an obvious generalisation of the one given for the
two previous actors : the actor fires whenever a token (carrying values x and y respectively) is available on
inputs, i1 and i2. Concerning the syntax, note the use of brackets on the left-hand side of the rule, which is
mandatory here.

The dup actor has a single input, but two outputs. This, again, is reflected in its interface and the format
of the firing rule :� �
actor dup

in (i : unsigned<8>)
out (o1 : unsigned<8>, o2 : unsigned<8>)

rules
| i : x −> (o1 : x , o2 : x) ;� �

For this token, a token, carrying the same value (x) will be produced on both outputs (o1 and o2) whenever
the actor fires.

The full text of the program is given in Listing 1.1. Note that, contrary to the presentation order we have
used above, the declarations of actors actually have to appear first (this is because these declarations will be
used by the net declarations). Comments are introduced by the -- character sequence6.

Listing 1.1: Complete CAPH source code for the application depicted in Fig. 1.1� �
−− Actor d e c l a r a t i o n s

actor i n c
in (i : unsigned<8>)

out (o : unsigned<8>)
rules
| i : x −> o : x+1;

actor dec
in (i : unsigned<8>)

out (o : unsigned<8>)
rules
| i : x −> o : x−1;

actor mul
in (i 1 : unsigned<8>, i 2 : unsigned<8>)

out (o : unsigned<8>)
rules
| (i 1 : x , i 2 : y) −> o : x∗y ;

6Comments are single-line, like in Java.

6

actor dup
in (i : unsigned<8>)

out (o1 : unsigned<8>, o2 : unsigned<8>)
rules
| i : x −> (o1 : x , o2 : x) ;

−− I /O de c l a r a t i o n s

stream inp : unsigned<8> from ” sample . txt ” ;
stream outp : unsigned<8> to ” r e s u l t . txt ” ;

−− Network d e c l a r a t i o n s

net (x1 , x2) = dup inp ;
net y1 = inc x1 ;
net y2 = dec x2 ;
net outp = mul (y1 , y2) ;� �

7

Chapter 2

Dealing with images

In this chapter we will show how to use CAPH to implement a very simple image processing application. This
will be the opportunity to introduce the core concepts used for dealing with images – mainly their representation
as structured streams of pixels – and to describe the tools used for manipulating them at the simulation level.

2.1 Representation of images

In chapter 1, the dataflow network used as an example, was operating on a raw, unstructured stream of data.
In contrast, images are structured streams of pixels. In particular, in most of applications, we need a way to
encode the dimensions of a given image (so that we can tell, for example, if a stream of 64 pixels actually
represents an image with 8 lines of 8 pixels, an image with 4 lines of 16 pixels or even four successive images
with 4 lines of 4 pixels).

For this, the idea is to insert, in the stream of pixels, control tokens expliciting the underlying structure
of the data and to distinguish control tokens from data tokens (carrying pixel values) by attaching a tag to
each token. In practice, for an application having to process images, the input of will be a sequential stream of
tokens, where each single token is either

• the tag SoI (start of image),

• the tag EoI (end of image),

• the tag SoL (start of line),

• the tag EoL (end of line),

• a pixel value, with tag Pixel.

With this scheme, the 4× 4 image depicted in Fig. 2.1, for example, will be represented (“encoded”) by the
following stream of tokens:

SoI SoL Pixel(10) Pixel(30) Pixel(55) Pixel(90) EoL SoL Pixel(33) Pixel(53)

Pixel(60) Pixel(12) EoL SoL Pixel(99) Pixel(56) Pixel(23) Pixel(11) EoL SoL

Pixel(11) Pixel(82) Pixel(46) Pixel(11) EoL EoI

In fact, only two distinct control tokens are needed :

• a token SoS (start of structure), signaling the start of an image or the start of a line within a image,

• a token EoS (end of structure), signaling the end of an image or the end of a line within a image.

As a result, and using the following abbreviations :

• < for SoS,

8

10 30 55 90

33 53 60 12

99 56 23 11

11 82 45 11

Figure 2.1: A 4× 4 image

• > for Eos,

• v for Pixel(v),

the image depicted in Fig. 2.1, can be represented by the following stream of tokens :

< < 10 30 55 90 > < 33 53 60 12 > < 99 56 23 11 > < 11 82 46 11 > >

2.2 Processing images

By using the pattern-matching mechanism introduced in Chap. 1 it is very easy to describe the behavior of
actors operating on structured streams of values.

Consider, for example, an actor performing image negation on images made of 8-bit unsigned pixels, i.e.
each pixel having value v is transformed to a pixel having value 255− v.

Such an actor is decribed in Listing 2.1.
First, note that the type of the input and output for this actor (i and o, lines 2–3) is not

unsigned<8>

but

unsigned<8> dc

The type dc (abbreviation for data or control) is here used for representing structured values1. A value
having type t dc, where t is a scalar (unstructured) type, is either

• the control value SoS (which can be abbreviated as ’<),

• the control value EoS (which can be abbreviated as ’>),

• a data value v, of type t (which can be abbreviated as ’v).

The actor rules use the pattern matching mechanism to inspect the tag of the input value and to produce
the appropriate value on output :

• if the input token is a control token (’< or ’>, lines 5 or 6), write the same token on output (this means
that the structure of the image is unchanged),

• if the input token is data token (pixel), carrying value x (line 7), write a data token carrying value 255-x

on output.

1CAPH uses so-called algebraic data types (aka variant types) for this. Internally, the dc type constructor is defined as :
type $t dc = SoS | EoS | Data of $t

where SoS, EoS and Data are the value constructors associated to tags and $t denotes a type variable. The notations ’<, ’> and
’v are then abbreviations for SoS, EoS and Data v respectively.

9

Listing 2.1: An actor computing image negatives in CAPH� �
1 actor inv
2 in (i : unsigned<8> dc)
3 out (o : unsigned<8> dc)
4 rules
5 | i : ’< −> o : ’< ;
6 | i : ’> −> o : ’> ;
7 | i : ’ x −> o : ’255−x ;� �

Note 1. The code in Listing 2.1 uses the abbreviated syntax for denoting values with type unsigned<8> dc.
It is also possible to use the un-abbreviated syntax, as shown in Listing. 2.2.

Listing 2.2: An actor computing image negatives in CAPH (alternate syntax)� �
actor inv

in (i : unsigned<8> dc)
out (o : unsigned<8> dc)

rules
| i : SoS −> o : SoS ;
| i : EoS −> o : EoS ;
| i : Data (x) −> o : Data(255−x) ;� �

Note 2. The CAPH type system ensures that tagged and untagged values are used consistently in programs.
It we write, for example, the last rule of actor inv as :� �
| i : x −> o:255−x ;� �

we get the following error message from the compiler :

File "inv.cph", line 7, characters 11-16:

>| i:x -> o:255-x;

>...........^^^^^

An error occured when typing this expression: types unsigned<#a> and unsigned<8> dc cannot be unified.

What the type checker detects here is that the output o, supposed to have type unsigned<8> dc (i.e. to be
assigned a tagged value) is actually assigned a value of type unsigned<n>2 (i.e. the untagged value 255− x).

In chapter 8, we will describe the implementation, simulation and synthesis of an application making use of
the inv actor.

2The notation #a designates a size variable. It basically means ”any, unknown, size n”.

10

Chapter 3

Image processing

In this last chapter, we describe the use of the CAPH language to implement a more “realistic” image processing
application.

This application performs edge extraction on images using the well-known Sobel filter.
An example of input and output image is given Fig. 3.1.

Input image Result image

Figure 3.1: Edge extraction with the Sobel operator

For each pixel Pi,j of the input image, the magnitude of the local gradient is computed using approximations
of the horizontal and vertical derivatives Gx and Gy, and the resulting value is compared to a fixed threshold
for producing a binary image (with edge pixels encoded as 1 and background pixels as 0). To simplify, the

magnitude of the gradient, G =
√
G2

x + G2
y, will be here approximated as |Gx|+ |Gy|/2n, where n is a scaling

factor.
Considering we have three actors, grad, asum, thr, computing respectively the gradient components, the

half sum their absolute values and the binarisation of an image, the dataflow formulation of the corresponding
is given in Listing 3.1. Figure 3.2 gives the corresponding dataflow network1

ri

grad

 :signed<12> dc

asum

 :signed<12> dc
 :signed<12> dc

thr(20)
 :signed<12> dc :signed<12> dc

Figure 3.2: The graphical representation of the program given in Listing. 3.5

Listing 3.1: A Sobel edge extraction application in Caph (top level description)� �
1 actor grad in (i : s igned<s> dc) out (o1 : s igned<s> dc , o2 : s igned<s> dc) . . .
2 actor asum in (i 1 : s igned<s> dc , i 2 : s igned<s> dc) out (o : s igned<s> dc) . . .

1The binarisation threshold has here been arbitrarily set to 20.

11

3 actor thr (k : s igned<s>) in (i : s igned<s> dc) out (o : unsigned<s> dc) . . .
4

5 stream i : s igned<12> dc from ”pcb . txt ” ;
6 stream r : s igned<12> dc to ” r e s u l t . txt ” ;
7

8 net (gx , gy) = grad i ; −− g rad i en t x and y components
9 net gm = asum (gx , gy) ; −− g rad i en t magnitude (approx)

10 net r = thr 20 gm;� �
The thr actor is described in Listing 3.2. This actor applies a binarisation threshold to an image, returning

a image of 1-bit unsigned pixels. The binarisation threshold is specified as a parameter (t, line 1), whose
value will be set when instanciating the actor at the network level (see line 10 in Listing. 3.1). Binarisation is
performed by simply comparing each pixel value to the threshold (last rule, line 7).

Listing 3.2: The thr actor in Caph� �
1 actor thr (k : s igned<s>)
2 in (i : s igned<s> dc)
3 out (o : unsigned<1> dc)
4 rules i −> o
5 | ’< −> ’<
6 | ’> −> ’>
7 | ’ p −> i f p>k then ’1 e l s e ’0
8 ;� �

The asum actor is described in Listing 3.3. This actor takes the computes an approximation of the gradient
magnitude by summing the absolute value of its two components and dividing it by 2. The computation of the
absolute value is performed using the global function fabs, which is declared before the actor. The division by
2 is implemented using the bit-shift builtin operator >>.

Listing 3.3: The asum actor in Caph� �
1 function f abs x = i f x < 0 then −x e l s e x : s igned<s> −> s igned<s>;
2

3 actor asum
4 in (i 1 : s igned<s> dc , i 2 : s igned<s> dc)
5 out (o : s igned<s> dc)
6 rules (i1 , i 2) −> o
7 | (’< , ’<) −> ’<
8 | (’> , ’>) −> ’>
9 | (’ p , ’ q) −> ’ (f abs (p)+fabs (q))>>1

10 ;� �
The computation of the gradient components could be carried out by writing out dedicated actors, in the

vein of those described in Sec. 2.5 of the reference manual. We will here adopt a more straightforward approach
and rely on the predefined convolution actors provided in the standard CAPH library. The gradient x and y
component can be computed by convolving the input image with the 2D kernels showed in Fig. 3.3.

Gx =

1 0 −1
2 0 −2
1 0 −1

 Gy =

1 2 1
0 0 0
1 2 1

Figure 3.3: Convolution kernels for computing the gradient x and y components

For this, the file convol.cph provides the actor conv233. This actor accepts three parameters :

• a convolution kernel, given as a 2D array k[0..2][0..2]

• a scaling factor n,

12

• a padding value v.

Given a M ×N input image x, represented as a structured stream

< < x1,1 x1,2 ... x1,N > < x2,1 x2,2 ... x2,N > ... < xM,1 xM,2 ... xM,N > >

the conv233 actor computes an output image y, with the same representation and dimensions

< < y1,1 y1,2 ... y1,N > < y2,1 y2,2 ... y2,N > ... < yM,1 yM,2 ... yM,N > >

where

yi,j =

v if 1 ≤ 2 or 1 ≤ j ≤ 2∑
0≤i′≤2
0≤j′≤2}

k2−i′,2−j′ .xi−i′,j−j′ /2n if 2 ≤ i ≤M and 2 ≤ j ≤ N (3.1)

The corresponding formulation in CAPH is given in Listing 3.4. The convolution kernels Gx and Gy are
specified as 2S arrays. The padding value v (for the first two lines and columns) has here been set to 0 and the
scaling factor is also 0.

Listing 3.4: Computation of the gradient components using the conv233 actor of the standard CAPH library� �
1 net gx = conv233 ([[1 , 0 , −1] , [2 ,0 , −2] , [1 , 0 , −1]] , 0 , 0) i ; −− grad x component
2 net gy = conv233 ([[1 , 2 , 1] , [0 , 0 , 0] , [−1 ,−2 ,−1]] , 0 , 0) i ; −− grad y component� �

The complete source code of the application is given in Listing 3.52. The corresponding dataflow graph is
given in Fig. 3.4. To simplify further assessment, the name of the input file and the binarisation threshold are
here specified indirectly by using references to macros. The corresponding values will be set when invoking the
compiler (with the -D option), thus offering a way of changing them without having to edit the source file (see
Sec. 9.9 of the manual).

Listing 3.5: Complete source code of the Sobel-based edge extraction� �
1 #inc lude ” convol . cph”
2
3 function f abs x = i f x < 0 then −x e l s e x : s igned<s> −> s igned<s>;
4
5 actor asum
6 in (i 1 : s igned<s> dc , i 2 : s igned<s> dc)
7 out (o : s igned<s> dc)
8 rules (i1 , i 2) −> o
9 | (’< , ’<) −> ’<

10 | (’> , ’>) −> ’>
11 | (’ p , ’ q) −> ’ (f abs (p)+fabs (q))>>1
12 ;
13
14 actor thr (k : s igned<s>)
15 in (i : s igned<s> dc)
16 out (o : unsigned<1> dc)
17 rules i −> o
18 | ’< −> ’<
19 | ’> −> ’>
20 | ’ p −> i f p>k then ’1 e l s e ’0
21 ;
22
23 stream i : s igned<12> dc from %i f i l e ;
24 stream r : unsigned<1> dc to ” r e s u l t . txt ” ;
25

2It can also be found in directory examples/working/primer/sobel of the distribution.

13

26 net gx = conv233 ([[1 , 0 , −1] ,
27 [2 ,0 , −2] ,
28 [1 , 0 , −1]] , 0 , 0) i ; −− grad x component
29 net gy = conv233 ([[1 , 2 , 1] ,
30 [0 , 0 , 0] ,
31 [−1 ,−2 ,−1]] ,0 ,0) i ; −− grad y component
32 net gm = asum (gx , gy) ; −− grad ampl i tude (approx)
33 net r = thr %thre sho ld gm;� �

r

i

conv233a([[1,0,-1],[2,0,-2],[1,0,-1]],0,0)

 :signed<12> dc

conv233a([[1,2,1],[0,0,0],[-1,-2,-1]],0,0)

 :signed<12> dc

 :signed<12> :signed<12>

asum

 :signed<12> dc

 :signed<12> :signed<12>

 :signed<12> dc

thr(20)

 :signed<12> dc

 :unsigned<1> dc

Figure 3.4: The graphical representation of the program given in Listing. 3.5

As for the application of the previous chapter, we will describe the implementation, simulation and synthesis
of this application in part 3 of this document.

14

Part II

The Caph IDE

15

Introduction

This part describes the CAPH IDE. This IDE basically provides a Graphical user Interface (GUI) to the caphc

compiler.

The CAPH IDE allows

• writing, reading and editing of CAPH programs,

• grouping all files associated to a CAPH program into projects,

• generating and viewing graphical representations of these programs,

• running simulations of these programs,

• generating SystemC and VHDL code.

Note. This document describes the Windows version of the CAPH IDE. The IDE can also be built and
used on Unix-based systems (Linux, MacOS).

16

Chapter 4

Basic usage

We will illustrate how to write, compile and simulate with the CAPH IDE with a very simple CAPH program,
even simpler than that used in Part 1. This program is reproduced in Listing 4.1. It involves a single actor,
named scale, which multiplies by k each value read on its input port i and writes the result on its output port
o. This actor is instanciated once, with k=2, and will read inputs from file sample.txt and write outputs to
file result.txt.

Listing 4.1: A very simple program for testing the CAPH IDE� �
actor s c a l e (k : unsigned<8>)

in (i : unsigned<8>)
out (o : unsigned<8>)

rules i −> o
| x −> k∗x
;

stream inp : unsigned<8> from ” sample . txt ” ;
stream outp : unsigned<8> to ” r e s u l t . txt ” ;

net outp = s c a l e 2 inp ;� �
First, launch the CAPH application by clicking on its icon in the installation directory or directly from

the Windows Start menu.

The application main window is shown in Fig. 4.1. The main elements are (with corresponding areas labeled
in red in Fig. 4.1) :

1. a menubar

2. four buttons for file manipulation; from left to right

• create a new file,

• open an existing file,

• save a file,

• save all files.

3. five buttons to invoke the compiler for

• generating the dataflow graph representation of the current program and visualize it (button graph),

• simulating the current program and visualize it (button Simu),

• generating SystemC code from the current program (button SystemC),

• generating VHDL code from the current program (button VHDL),

17

• generating XDF representation of the current program (button XDF).

4. a tree view of the current project,

5. a tab for viewing and editing input source files,

6. a tab for viewing output files,

7. a log area, displaying issued command and outputs from the compiler.

1

32

4 5 6

7

Figure 4.1: caph IDE main window

Invoke the [Configuration:Compiler and Tools] menu item and check that the specified paths are right (see
Fig. 4.2). They should respectively point to

• the location of the caphc compiler (<install>/bin/caphc, where <install> is the CAPH installation
directory, as specified during the installation process),

• the location of the program to invoke for viewing .dot graph files,

• the location of the program to invoke for viewing .pgm image files.

If the specified paths are not correct1, adjust them and click Ok.

Create a new source file by clicking on the New file button (upper left) or invoking the corresponding
item of the File menu. A new tab will appear, named new in the input files tab area. In this text tab, type2 the
program reproduced in Listing 4.1, as illustrated in Fig. 4.3.

Save the program by clicking on the Save file button or invoking the corresponding item of the File menu.
Be sure to use the .cph filename suffix. Here we have saved it under name main.cph

To generate the graph, clicking the Graph button (upper right). This will

1This may be the case, for example, if you have changed the program to view graphs and/or images since CAPH was installed.
2Or copy-paste

18

Figure 4.2: Path configuration window

Figure 4.3: Entering program

• invoke the CAPH compiler with the adequate option(s),

• generate the .dot result file (in the same directory as the source file),

• view this result by invoking the graph visualisation program specified in [Configuration : Compiler and
Tools] window.

The result is displayed in Fig. 4.4.

For simulating the program, we first need to create the file sample.txt containing the input tokens.
Click on the New File button and type, for example, the following line in the newly created file tab :

1 2 3 4

Save the file under name sample.txt in the directory containing the caph source file (see Fig. 4.5).
Go back to the CAPH source file by selecting the corresponding tab3 and invoke the compiler by clicking

on the Simu button. This will run the program, generate results in the file result.txt4 and display the latter
in a separate tab, as shown in Fig. 4.6.

3Simulation will not work otherwise !
4As specified by the stream ... from line in the program.

19

Figure 4.4: Viewing the dataflow graph of the program

For generating the SystemC, VHDL or XDF representation of the program, follow the procedure
described for generating the graph representation :

1. select the tab containing the source program

2. click on the SystemC (resp. VHDL, resp. XDF) button

The result files will be generated in the same directory and displayed as separate tabs on the right, as illustrated
in figures. 4.7 and 4.8 respectively.

20

Figure 4.5: Writing the input data file for simulation

Figure 4.6: Viewing simulation results

21

Figure 4.7: After generating SystemC code

Figure 4.8: After generating VHDL code

22

Chapter 5

Working with projects

caph IDE provides a simple way of organizing files related to a given application within an entity called a
project. Technically, a project is nothing but a directory gathering all files related to an application. This
includes CAPH source files, input data files for simulation, files saving compiler options and a collection of
subdirectories containing the files produced by the compiler in graph, simulation, SystemC or VHDL mode.
Having a separate directory for each mode makes interfacing to external tools – C++ compiler, VHDL simulators
and synthetizers in particular – easier.

In this chapter we will describe first how to create new projects and second how to use existing projects.

5.1 Creating a project

For simplicity, the created project will include a single source file, similar to that used in chapter 4.

. Create a new project by invoking the corresponding item in the File menu. In the displayed dialog
(Fig. 5.1) give a a name to the project and specify a directory to host it. For example, if the name is myproj and
the root directory C:\Users\Bob\Desktop, then all the files related to the project will be stored in directory
C:\Users\Bob\Desktop\myproj. If the projet needs additionnal, pre-existing source or data files, add them in
the corresponding text box or using the provided button. These files will be automatically copied in the project
directory. No additionnal file is needed here.

Figure 5.1: The dialog shown when creating a new project

23

When a project myproj is created, a ”main” source file is created with name main.cph in the project
directory and a file tab for editing is file is created (see Fig. 5.2). Type the CAPH source code of your program
here1 and save it (see Fig. 5.3).

Figure 5.2: Ready to edit the project main source file

Figure 5.3: Main source file completed

From now, each compile action will

• implicitely operate on the project main source file,

• generate results in a specific directory (dot for graph, simu for simulation, systemc, vhdl and xdf).

The project tree representation (on the left) will be automatically updated to reflect the effect of each
compile action. Navigation within this tree is of course allowed and double clicking on an element will open the
corresponding file in a distinct tab (if not already opened).

For example, Fig. 5.4 display the GUI after clicking the Graph and the SystemC compile buttons. The
complete list of generated files for each step can be viewed by clicking on the respective subdirectory in the tree
view on the left.

5.2 Opening an existing project

To open an existing projec, invoke the Open Project item of the File menu and specify the name of the project
description file (ending with the .cphpro extension), located in the project directory.

For example, Fig. 5.5 shows the IDE just about to open the project located in primer/simple directory
which can be found in the examples provided with the CAPH distribution2. This project corresponds to the
program described in Part 1 of this document.

1If you already have the source code, you can of course copy it and paste it.
2These examples have here been installed in Documents/CaphExamples.

24

Figure 5.4: After clicking the Graph and SystemC buttons in project mode

Fig. 5.6 shows the IDE just after opening this project.

25

Figure 5.5: About to open the Primer project

26

Figure 5.6: The Primer project opened

27

Chapter 6

Compilation options

The caph compiler comes with a fairly large number of options (see Sec. 12 of the language reference manual).
Most of these options can be set and inspected by invoking Compilater options item of the Configuration menu.
Options are organized by grouped by tabs, as illustrated in Fig. 6.1, in which the tab related to SystemC has
been selected.

Figure 6.1: The options setting dialog

An important point is that, when working in project mode, each modification to compilation options is
recorded and saved in a dedicated file in the project directory. This file, when present, is automatically read
when a project is opened. This way, compilation options are remembered between sessions.

28

Part III

Makefile-based design with Caph

29

Introduction

This part describes how to use CAPH in a command line based environment, using Makefiles. On Unix-like
platforms like Linux or MacOS, this is typically accomplished by running the corresponding tools from within
a command shell. On Windows, this can be done using Unix emulation systems like MinGW [8] or Cygwin [9].
As stated in the general introduction, although this approach may appear a bit more complicated than the
former at first sight but it provides a way of integrating existing third-party tools, such as C++ compilers and
VHDL synthetizers, in a fully automatized design flow.

This part assumes a basic familiarity with command line interfaces, shell programming and make-based
compilation flows. Aside, a knowledge in digital design (and of the VHDL language) will help to appreciate
the final products of the CAPH toolset. Sections describing the synthesis of VHDL code on FPGA requires a
previous knowledge of the altera Quartus ii environment.

The following typographic conventions are followed :

• source code is written in gray-shaded boxes, like this :� �
−− CAPH source code w i l l appear here� �
• makefiles are written in pink-shaded boxes, like this :� �
−− Make f i l e s w i l l appear l i k e t h i s� �
• shell input (on the command line) is written like this (the character # is the shell prompt) :

command

• shell output is written like this :

shell output

30

Chapter 7

Using the caphc compiler

In this chapter, we will show how to invoke to caphc compiler from the command line in order to

• generate and view the dataflow graph corresponding to a program,

• simulate this program,

• generate SystemC and VHDL code.

The program used as example will be the one introduced in Part 1 and given in Listing 1.1. We assume that
the corresponding source code has been placed in a file named simple.cph.

7.1 Configuring

Add a variable named CAPH, pointing to the root of your local CAPH installation, to your environment. For
example (with a Bash shell) :

CAPH=/usr/local/caph; export CAPH

Add $CAPH/bin to your $PATH environment, so that CAPH commands can be found :

PATH=$CAPH/bin:$PATH; export $PATH

7.2 Viewing the dataflow graph

From the directory containing the source file, type, from a shell, the following command :

caphc −dot simple.cph

Executing this command yields the following output

This is the Caph compiler, version 2.8.3

(C) 2011-2017 J. Serot (Jocelyn.Serot@univ-bpclermont.fr)

For more information, see : http://caph.univ-bpclermont.fr

Wrote file ./simple.dot

and produces the graphical representation of the program in file named simple.dot. This file is in the
DOT format and can be visualized with the graphviz suite of tools [2]. Under MacOS, launch the Graphviz

application and open the corresponding file1. Under Windows, use the dotty application. The resulting graph
is shown in Fig. 7.1. The four involved actors can be readily recongnized. Wires are labeled with the types of

1Alternatively, from a terminal, type open -a Graphviz simple.dot.

31

the conveyed values (the type of intermediate wires is automatically inferred by the compiler). Input and output
wires are drawn as triangles. Several options of the compiler allow the aspect of this graphical representation
and the amount of displayed informations to be adjusted.

outp

inp

dup

 :unsigned<8>

inc

 :unsigned<8>

dec

 :unsigned<8>

mul

 :unsigned<8> :unsigned<8>

 :unsigned<8>

Figure 7.1: The graphical representation of the program given in Listing. 1.1 computed by the CAPH compiler
front-end

7.3 Simulating the program

There are actually two ways of simulating programs : either directly from the source code, using the reference
interpreter of the language2, or by using the SystemC backend.

In both cases, input(s) and output(s) will be read (resp. written) to text files3. Input text files can be simply
written by hand or generated from other data representations (images, in particulary) using ad-hoc conversion
programs provided in the CAPH distribution (see Sec. 9.5 of the reference manual).

In our case, and in accordance to the stream declarations written in file simple.cph, the input file will be
named sample.txt and the output file result.txt. The file sample.txt simply contains the sequence of input
tokens (unsigned integers in this particular case, as shown in Listing 7.1 :

Listing 7.1: The input file sample.txt used for simulating the program of Listing 1.1

1 2 3 4 5 6 7 8

7.4 Simulation using the interpreter

Simulation is launched by invoking the compiler with the -sim option :

caphc −sim simple.cph

2As demonstrated in Part 2, with the IDE
3Of course, for the final application, running the on target hardware platform, there will have to be a builtin mechanism for

producing the stream(s) of input tokens and consuming the stream(s) of output tokens. In practice, this mechanism will take
the form of a couple of dedicated VHDL processes reading and writing values from/to the I/O devices attached to the hardware
platform (video cameras, digital display, host pc interface, . . .).

32

Executing this command yields the following output

--

This is the Caph compiler, version 2.8.3

...

Wrote file ./result.txt

--

The contents of the file result.txt is given in Listing 7.2.

Listing 7.2: The output file result.txt generated when simulating the program of Listing 1.1 with the input
file of Listing 7.1

0 3 8 15 24 35 48 63

7.5 Simulation using the SystemC backend

This actually requires three steps : first generating the SystemC code representing the application, second
compiling this code to produce an executable and finally running this executable.

The whole process is greatly simplified by using the caphmake utility program included in the distribu-
tion4. This program automatically generates Makefile descriptions from project descriptions, describing the
application-specific parameters. A detailed presentation of caphmake can be found in Sec. 9.10 of the Reference
Manual. We will here only illustrate its basic usage.

Listing 7.3 shows a very simple project file for compiling and running the SystemC code derived from the
simple.cph program. The SC_OPTS macro gives the options to pass the SystemC backend of the caphc compiler.
Here the option -sc_stop_time specifies the duration of the simulation in ns5.

Listing 7.3: File simple.proj for compiling and running SystemC code� �
SC OPTS = −s c s t op t ime 200� �

After writing simple.proj, just invoke caphmake with the name of the main source file :

caphmake −main simple

This will write a file named Makefile in the current directory.

Now use this top-level Makefile to generate the SystemC-specific makefile :

make systemc.makefile

This will write a file named Makefile.systemc in the current directory.

We now can generate the SystemC code by simply typing

make systemc.code

yielding the following output

1 make -f Makefile.systemc code CAPH=/usr/local/caph

2 /usr/local/caph/bin/caphc -I /usr/local/caph/lib/caph -systemc -sc_stop_time 200 simple.cph

3 ---

4 This is the Caph compiler, version 2.8.3

5 (C) 2011-2017 J. Serot (Jocelyn.Serot@univ-bpclermont.fr)

6 For more information, see : http://caph.univ-bpclermont.fr

7 ---

8 Wrote file ./simple_expanded.dot

9 Wrote file ./simple_net.cpp

4Since version 2.8.1.
5The complete list of options is given in the language reference manual.

33

10 Wrote file ./dup_act.h

11 Wrote file ./dup_act.cpp

12 Wrote file ./mul_act.h

13 Wrote file ./mul_act.cpp

14 Wrote file ./dec_act.h

15 Wrote file ./dec_act.cpp

16 Wrote file ./inc_act.h

17 Wrote file ./inc_act.cpp

Line 2 shows the invocation of the CAPH compiler with the SystemC backend. Lines 8–17 show the different
files generated by the CAPH compiler. The file simple_expanded.dot is a variant of the file simple.dot dis-
cussed in Sec. 7.26. The file simple net.cpp contains the top-level network description. The files dup_act.h and
dup_act.cpp (resp. mul_act.h and mul_act.cpp, dec_act.h and dec_act.cpp, inc_act.h and inc_act.cpp)
contain the interface and the implementation of the dup (resp. mul, dec and inc) actor.

The generated code can be compiled by simply typing

make systemc.exe

yielding the following output, which shows the compilation of this code using the classical SystemC flow (in
our case, gcc, with link to the systemc library7).

1 make -f Makefile.systemc exe CAPH=/usr/local/caph

2 (cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc -I/usr/local/systemc-2.3.1/include

3 -Wno-deprecated -Wno-parentheses-equality -D_CPP11 -c ‘basename inc_act.cpp‘)

4 (cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc -I/usr/local/systemc-2.3.1/include

5 -Wno-deprecated -Wno-parentheses-equality -D_CPP11 -c ‘basename dec_act.cpp‘)

6 (cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc -I/usr/local/systemc-2.3.1/include

7 -Wno-deprecated -Wno-parentheses-equality -D_CPP11 -c ‘basename mul_act.cpp‘)

8 (cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc -I/usr/local/systemc-2.3.1/include

9 -Wno-deprecated -Wno-parentheses-equality -D_CPP11 -c ‘basename dup_act.cpp‘)

10 (cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc -I/usr/local/systemc-2.3.1/include

11 -Wno-deprecated -Wno-parentheses-equality -D_CPP11 -c ‘basename simple_net.cpp‘)

12 (cd .; g++ -L/usr/local/systemc-2.3.1/lib-macosx64 inc_act.o dec_act.o mul_act.o dup_act.o simple_net.o

13 -o simple_sc -lsystemc 2>&1 | c++filt)

Finally, simulation is launched by running the compiled executable

make systemc.run

yielding the following output

1 make -f Makefile.systemc run CAPH=/usr/local/caph

2 ./simple_sc

3

4 SystemC 2.3.1-Accellera --- Aug 9 2015 15:42:56

5 Copyright (c) 1996-2014 by all Contributors,

6 ALL RIGHTS RESERVED

7 Simulation stopped at t=200 ns

8 Wrote file result.txt

The generated file result.txt contains the results of the simulation (which is exactly the same as the one
obtained when running the source level simulator).

The three different steps (code generation, compilation, execution) can be run with a simple command by
simply typing make systemc.run directly after invoking caphmake.

6This variant, only required by the SystemC and VHDL backend, has explicit FIFO and flow-splitting nodes.
7Appropriate definitions are provided in the file $CAPH/lib/etc/Makefile.core and can be adjusted according to your local

SystemC installation.

34

7.6 Generating and simulating VHDL code

The CAPH compiler can produce a complete RT-level VHDL representation of the application which can be
simulated and, latter synthetised using vendor specific tools (such as altera Quartus or xilinx ISE). This
section focuses on simulation (synthesis will be covered in Sec. 7.7).

Classicaly, simulation of VHDL code is performed using dedicated simulators included in the vendor toolsets
(for example, the ALTERA Quartus toolset includes the modelsim simulator). We describe here another
approach, using a freely available VDHL compiler and simulator called GHDL [3]. GHDL can be invoked
directly from the command line and hence can be easily integrated in a makefile-based design-flow.

As for the SystemC backend, the first step is to define, in the project description file (.proj), all the
application-specific options. In our case, the only thing to do is add a line dedicated to the VHDL backend in
the file described in Listing 7.3, as shown in Listing 7.4.

Listing 7.4: File simple.proj for compiling and running SystemC and VHDL code� �
SC OPTS = −s c s t op t ime 200
GHDL RUN OPTS = −−stop−time=200ns� �

The added line (line 2) specifies to options to be passed to the GHDL simulator.

After that, the process is very similar to that described in the previous section for the SystemC backend :

• invoke make vhdl.makefile to build the VHDL-specific Makefile,

• invoke make vhdl.code to generate the VHDL code,

• invoke make vhdl.exe to build the executable,

• invoke make vhdlrunexe to run the simulation.

As before, the three last steps can be obtained by simply typing

make vhdl.run

yielding, in our case, the following output

1 make -f Makefile.vhdl run CAPH=/usr/local/caph

2 /usr/local/caph/bin/caphc -I /usr/local/caph/lib/caph -vhdl simple.cph

3 ---

4 This is the Caph compiler, version 2.8.3

5 (C) 2011-2017 J. Serot (Jocelyn.Serot@univ-bpclermont.fr)

6 For more information, see : http://caph.univ-bpclermont.fr

7 ---

8 Wrote file ./simple_expanded.dot

9 Reverting to default size for fifo F12

10 Reverting to default size for fifo F11

11 Reverting to default size for fifo F10

12 Reverting to default size for fifo F9

13 Reverting to default size for fifo F8

14 Reverting to default size for fifo F7

15 Wrote file ./simple_net.vhd

16 Wrote file ./dup_act.vhd

17 Wrote file ./mul_act.vhd

18 Wrote file ./dec_act.vhd

19 Wrote file ./inc_act.vhd

20 Wrote file ./simple_tb.vhd

21 warning: VHDL annotation file fifo_caps.dat does not exist.

22 (cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename simple_tb.vhd‘)

23 (cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename inc_act.vhd‘)

24 (cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename dec_act.vhd‘)

35

25 (cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename mul_act.vhd‘)

26 (cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename dup_act.vhd‘)

27 (cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename simple_net.vhd‘)

28 (cd .; ghdl -e -P/usr/local/caph/lib/vhdl simple_tb)

29 /usr/local/caph/bin/txt2bin uint 8 sample.txt > sample.bin

30 ghdl -r -P/usr/local/caph/lib/vhdl simple_tb --stop-time=200ns --vcd=simple_tb.vcd

31 ./simple_tb:info: simulation stopped by --stop-time

Line 2 shows the invocation of the CAPH compiler with the VHDL backend. The produced files are listed
on lines 15–20. The file simple net.vhd contains the top-level network description, The files {dup_act.vhd,
mul_act.vhd, dec_act.vhd and inc_act.vhd contain the RTL description of the actors involved in this network.
The file simple_tb.vhd contains a testbench for performing the simulation at the RTL level. Simulation itself
is performed as shown in line 30.

Line 29 shows the invocation of the txt2bin utility program to generate the file sample.bin to be used
as input for simulation. The reason for this is that the input data files read by the VHDL code use a special,
text-encoded binary format. The txt2bin program is used to convert the input simulation file sample.txt to
this format8.

Simulation results are produced in file result.bin. This file is encoded using the same binary format and
can be decoded using the bin2txt utility program. For this, it suffices to invoke

make vhdl.show

This yields the following result, which shows the expected values in file result.txt

1 make -f Makefile.vhdl show CAPH=/usr/local/caph

2 /usr/local/caph/bin/bin2txt uint 8 result.bin > result.txt

3 result.txt: 0 3 8 15 24 35 48 63

The “functional” style of simulation illustrated above is in general sufficient for assessing the code. It is
however possible to get a more “time oriented” view by using the --vcd option of the GHDL compiler. This
option must be added to the macro GHDL_RUN_OPTS in the project file, as shown in Listing 7.5.

Listing 7.5: File simple.proj for compiling and running SystemC and VHDL code (2nd version)� �
SC OPTS = −s c s t op t ime 200
GHDL RUN OPTS = −−stop−time=200ns −−vcd=s imp le tb . vcd� �

This instructs the GHDL simulator to dump a detailed log of the simulation in VCD format [5]. This log
file can examined using various waveform visualisation programs. Fig. 7.2, for example, shows an excerpt of the
log file as visualized by the gtkwave application [4]. Visualisation has been here limited to signals connected to
the instance of the inc actor. One immediately spots the clock and reset signals9. The signal i_empty goes
to 0 when a data is available on the FIFO connected to input i of the actor. Reading from the FIFO is then
triggered by setting signal i_rd to 1. Symetrically, the signal o_full is 0 when place is available on the FIFO
connected to output o of the actor. Writing to this FIFO is then triggered by setting signal i_wr to 1.

7.7 Synthetizing the VHDL code

By synthesis we mean the tranformation of the RT-level code generated by the CAPH compiler into a FPGA
configuration. Contrary to simulation, this operation depends on the physical target device and requires the
toolset from the corresponding vendor. We do not address the issue of physical I/O interfacing – i.e. we only de-
scribe the synthesis of the “core” functionality described by the CAPH network (integration of CAPH-generated
code into a full-fledged hardware platform is can be carried out with the GpStudio IDE by example [7]).

8The extra arguments to the program, uint 8 in this case, are infered from the type of the corresponding input stream. A
complete description of the binary format and the associated converter programs is provided in the reference manual.

9The clock period is set by default to 10 ns. There’s an option of the compiler to change it (see [1].

36

Figure 7.2: Some VHDL simulation results as viewed by gtkwave

In this section, we will illustrate the process with the Quartus II suite of tools from altera, using the
simple application10.

Figs.7.3 to 7.6 illustrates the creation of the relevant project under the Quartus II (version 13.1) environ-
ment11.

Fig. 7.3 shows the main Quartus window just after launching. In this window, select File in the top menu
bar and then the New Project Wizard item.

A window named after this item pops up. Fill the requested text fields as illustrated in Fig. 7.4. In
our case, we have copied all the VHDL files generated by the CAPH compiler in a separate directory named
Z:/vhdl/caph/simple12. The name of the project and the name of the top-level design entity must be set to
simple_net. Clicking on the Next butten then brings the window shown in Fig. 7.5.

In this window, using the ... and Add buttons, you have to specify the list of all the VHDL files included
in the projet. In our case, two groups of files are added : the five files generated by the CAPH compiler :
dup_act.vhd, mul_act.vhd, dec_act.vhd, inc_act.vhd and simple_tb.vhd; and two predefined files taken
from the CAPH VHDL library : ../lib/caph.vhd and ../lib/fifo_fb.vhd (the former contains a set of
types and functions related to the CAPH language, the latter the implementation of a generic FIFO). When
completed, click again on the Next button.

This brings up the window shown in Fig. 7.6, in which you select the target device. In our case, a simple
Cyclone III is chosen. Clicking then on the Finish button brings back to main window.

On the Project Navigator subwindow (top left), select Hierarchy to show the design hierarchy. Selecting an
entity will then print the corresponding source file on the right subwindow, as illustrated in Fig. 7.7.

Synthesis is launched by selecting the Start Compilation item in the Processing menu (or simply by clicking
the small right-oriented purple triangle in the toolbar). Depending on your machine this may take from a few
seconds to a few minutes. In our case, the result is shown in Fig. 7.8. Here, it can be noted that only a very
small fraction of the available hardware resources is used.

Fig. 7.9 shows the RT-level view of the design after synthesis13. This is obtained by invoking the Netlist

10This is only for pedagogical reasons since this application is obviously not a very useful one. Chap.8 and 9 will show how to
implement more “realistic” applications, performing image processing.

11We make the assumption here that the reader has a minimum familiarity with this environment. Several good tutorials can be
found online, in particular on the ALTERA website.

12The option -vhdl target dir of the compiler can be used for that purpose.
13Before physical mapping. It is also possible to get a post-mapping view.

37

viewer item in the Tools menu.

38

Figure 7.3: The Quartus II environment, just after launching

39

Figure 7.4: Setting the projet - directory and top entity selection

40

Figure 7.5: Setting the source files of the project

41

Figure 7.6: Setting the target device

42

Figure 7.7: Displaying design hierarchy and source files

43

Figure 7.8: Synthesis results

44

Figure 7.9: Post-synthesis, RT-level view

45

Chapter 8

Dealing with images

This chapter describes the implementation, simulation and synthesis, using the command-line interface, of the
application based upon the concepts introduced in Chapter 2.

The code of this application, using the inv actor introduced in Chapter 2, is given in Listing 8.1. There’s
only net declaration, instantiating the inv actor. The first line (#include "dc.cph" is mandatory for making
use of the dc type. The input image is to be read in file lena128.pgm and the result to be written in file
result.pgm1.

Listing 8.1: Complete CAPH source code for an application computing negative images� �
#inc lude ”dc . cph”

actor inv ()
in (i : unsigned<8> dc)
out (o : unsigned<8> dc)

rules
| i : ’< −> o : ’<
| i : ’> −> o : ’>
| i : ’ x −> o : ’255−x
;

stream inp : unsigned<8> dc from ” lena128 .pgm” ;
stream outp : unsigned<8> dc to ” r e s u l t . pgm” ;

net outp = inv inp ;� �
This program can be found in the examples/primer/invimg directory in the CAPH distribution.
The corresponding project file (also to be found in the examples directory) is shown in Listing 8.2. The

option -abbrev-dc-ctors, at lines 1 and 2, tells the simulators (interpreter and SystemC-based, respectively)
to read and write input and output files using the abbreviated syntax for control tokens.

Listing 8.2: File invimg.proj for the invimg program of Listing 8.1� �
SIM OPTS = −abbr ev dc c to r s
SC OPTS = −s c s t op t ime 1000000 −s c abb r ev d c c t o r s
GHDL RUN OPTS = −−stop−time=400000ns� �

Let’s build the top-level Makefile by typing

caphmake

Then, the dataflow graphical representation of the program is easily obtained by invoking

1The PGM (Portable Graymap Format) is a portable format for representing gray level images introduced in the NetPBM
projet [6]. CAPH use the P2 (ASCII) sub-format.

46

make dot.show

The representation is shown in Fig. 8.1

outp

inp

inv

 :unsigned<8> dc

 :unsigned<8> dc

Figure 8.1: The graphical representation of the program given in Listing. 8.1

8.1 Simulation

The simulator cannot directly read and write images encoded with the PGM format. For this reason, the
CAPH distribution comes with a pair of utility programs, pgm2txt and txt2pgm, to convert a PGM [6] file into
a structured text file format and vice-versa in which pixels and start/end of line/frame are encoded using the dc
type introduced in Chapter 2.1. A detailed description of these tools can be found in the reference manual. They
programs can called directly from the command line before and after launching the simulation (to convert from
and to the PGM format respectively), but this step can automatized further by writing a dedicated auxilliary
files called a .procs file. In our case, the contents of this file (also to be found in the primer/invimg directory)
is reproduced in Listing 8.3. The first line instructs the compiler to produce the file lena128.txt containing
the input image in structured text format, ready for simulation, from the input image file lena128.pgm2. The
second line instructs the compiler to produce the file result.pgm containing the result image in PGM format3.

Listing 8.3: File invimg.procs for the invimg program of Listing 8.1� �
PRE PROC = pgm2txt −abbrev lena128 .pgm lena128 . txt
POST PROC = txt2pgm −abbrev 255 r e s u l t . txt r e s u l t . pgm� �

Simulation is then performed simply by invoking

make sim.makefile
make sim

This yields the following output

make -f Makefile.sim run CAPH=/usr/local/caph

/usr/local/caph/bin/pgm2txt -abbrev lena128.pgm lena128.txt

2The effect of the -abbrev option is to use the abbreviated format (<, >) for d(enoting control and data tokens. Without it,
these tokens will be written as SoS, EoS and Data respectively.

3As for pgm2txt, the -abbrev option indicates that the input text file uses the abbreviated format for tokens. The numerical
argument (255, here) gives the maximum value to be written in the PGM file header.

47

/usr/local/caph/bin/caphc -sim -I /usr/local/caph/lib/caph -I /usr/local/caph/lib/caph -abbrev_dc_ctors main.cph

This is the Caph compiler, version 2.8.3

(C) 2011-2017 J. Serot (Jocelyn.Serot@univ-bpclermont.fr)

For more information, see : http://caph.univ-bpclermont.fr

Wrote file ./result.txt

Viewing the result image is obtained by typing

make sim.show

This invokes the txt2pgm utility and launch the PGM image viewing program which has been specified when
installing CAPH. In our case, the results are show below and in Fig. 8.2-b.

make -f Makefile.sim show CAPH=/usr/local/caph

/usr/local/caph/bin/txt2pgm -abbrev 255 result.txt result.pgm

open -a Toyviewer result.pgm

a b

Figure 8.2: Input and output images after simulation for the program given in Listing. 8.1

8.2 Simulation using the SystemC backend

As in the previous chapter, this is done by simply typing

make systemc.makefile
make systemc.run

Executing this command yields the following output

make -f Makefile.systemc run CAPH=/usr/local/caph

/usr/local/caph/bin/caphc -I /usr/local/caph/lib/caph -systemc -I /usr/local/caph/lib/caph -sc_stop_time 1000000 -sc_abbrev_dc_ctors

main.cph

...

Wrote file ./invimg_expanded.dot

Wrote file ./invimg_net.cpp

Wrote file ./invimg_globals.h

Wrote file ./invimg_globals.cpp

Wrote file ./inv_act.h

Wrote file ./inv_act.cpp

(cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc ... -c ‘basename inv_act.cpp‘)

(cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc ... -c ‘basename invimg_globals.cpp‘)

(cd .; g++ -std=c++11 -I. -I/usr/local/caph/lib/systemc ... -c ‘basename invimg_net.cpp‘)

48

(cd .; g++ -L/usr/local/systemc-2.3.1/lib-macosx64 inv_act.o invimg_globals.o invimg_net.o

-o invimg_sc -lsystemc 2>&1 | c++filt)

./invimg_sc

SystemC 2.3.1-Accellera --- Aug 9 2015 15:42:56

Copyright (c) 1996-2014 by all Contributors,

ALL RIGHTS RESERVED

Simulation stopped at t=1 ms

Viewing the file result.txt is then handled exactly like above, by invoking

make systemc.show

8.3 Generating and simulating VHDL code

The process, again, is similar. Simply type

make vhdl.makefile
make vhdl.run

Executing this command yields the following output

make -f Makefile.vhdl run CAPH=/usr/local/caph

/usr/local/caph/bin/caphc -I /usr/local/caph/lib/caph -vhdl -I /usr/local/caph/lib/caph main.cph

...

Wrote file ./invimg_expanded.dot

Reverting to default size for fifo F5

Reverting to default size for fifo F4

Wrote file ./invimg_net.vhd

Wrote file ./invimg_types.vhd

Wrote file ./inv_act.vhd

Wrote file ./invimg_tb.vhd

warning: VHDL annotation file fifo_caps.dat does not exist.

(cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename invimg_types.vhd‘)

(cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename invimg_tb.vhd‘)

(cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename inv_act.vhd‘)

(cd .; ghdl -a -P/usr/local/caph/lib/vhdl ‘basename invimg_net.vhd‘)

(cd .; ghdl -e -P/usr/local/caph/lib/vhdl invimg_tb)

/usr/local/caph/bin/pgm2bin 8 lena128.pgm lena128.bin

ghdl -r -P/usr/local/caph/lib/vhdl invimg_tb --stop-time=400000ns

./invimg_tb:info: simulation stopped by --stop-time

Viewing the file result.txt is then handled exactly like above, by invoking

make vhdl.show

The only difference here with the steps described in the previous section concerns the generation of the input
file(s) and the conversion of the output file(s) to/from the custom bin format used by the VHDL simulator. The
utility programs to use are now pgm2bin and bin2pgm respectively4. The corresponding calls to these utility
programs are automatically inserted in the VHDL-specific Makefile generated by caphmake.

4These programs are also included in the CAPH distribution.

49

Chapter 9

Image processing

This chapter describes the implementation, simulation and synthesis, using the command-line interface, of the
Sobel application introduced in Chapter 3.

The code of this application has been given in Listing. 3.5. The related project can be found in the directory
examples/primer/sobel of the distribution.

9.1 Simulation using the interpreter

The simulation process is completely similar to the one described in Chapter 8. The project description file is
reproduced in Listing 9.1.

Listing 9.1: Project file for the program of in Listing. 3.5� �
DOT OPTS = −D i f i l e=pcb .pgm −D thre sho ld=80 −suppr e s s ca s t warn ing s
SIM OPTS = −D i f i l e=pcb .pgm −D thre sho ld=80 −suppr e s s ca s t warn ing s −abbr ev dc c to r s

−warn channels −dump channel stats
SC OPTS = −D i f i l e=pcb .pgm −D thre sho ld=80 −suppr e s s ca s t warn ing s −s c abb r ev d c c t o r s

−s c s t op when i d l e 1000 −s c dump f i f o s t a t s
VHDL OPTS = −D i f i l e=pcb .pgm −D thre sho ld=80 −suppr e s s ca s t warn ing s −vhd l a n n o t f i l e

s o b e l f i f o s t a t s . dat
GHDL RUN OPTS = −−stop−time=160000ns� �

The -D option is used is give values to the symbols named %ifile and %threshold in the source code.
The option -suppress_cast_warnings is used to omit warning messages which are emitted when compiling

the fabs function and which, in this context, can be safely ignored.
The -warn_channels option is set in order to detect channel overflows and the -dump_channel_stats is

set in order to check channel usage after run.

The .procs file for this application, given in Listing 9.2, is similar to that given in the previous chapter. It
simply tells how to convert from and to PGM format for the input and output images.

Listing 9.2: File sobel.procs for the sobel program of Listing 3.5� �
PRE PROC = pgm2txt −abbrev pcb .pgm pcb . txt
POST PROC = txt2pgm −abbrev 255 sim/ r e s u l t . txt sim/ r e s u l t . pgm� �

Simulation is performed, as usual with the following sequence of commands :

caphmake
make sim.makefile
make sim.run

It produces the following result1 :

1Warning, this can take a few seconds

50

make -f Makefile.sim run CAPH=/usr/local/caph

/usr/local/caph/bin/pgm2txt -abbrev pcb.pgm pcb.txt

/usr/local/caph/bin/caphc -sim -I /usr/local/caph/lib/caph -I /usr/local/caph/lib/caph -D ifile=pcb.pgm -D threshold=80 -suppress_cast_warnings -abbrev_dc_ctors -warn_channels -dump_channel_stats main.cph

...

Wrote file ./result.txt

W3: occ=0/256 max=2

W2: occ=140/256 max=140

W1: occ=140/256 max=140

W6: occ=0/256 max=2

W5: occ=140/256 max=140

W4: occ=140/256 max=140

W8: occ=0/256 max=2

W7: occ=0/256 max=2

W9: occ=0/256 max=2

W10: occ=0/256 max=2

Displaying the output image (Fig. 9.1-b) is obtained by invoking

make sim.show

The maximum occupation reported for channels W1, W2, W5 and W4 is worth to be noted. The corresponding
channels are used by the conv233 actor to memorize the two previous lines when computing the convolution2.
The maximum occupation value corresponds here to the width in pixels of the input image (140). No overflow
occured because the default depth of channels in simulation is 256. Should we have used a larger image (ex:
512× 512), it would have been necessary to adjust this depth with the -chan_cap option.

a b

Figure 9.1: Input and output images after simulation for the program given in Listing. 3.5

9.2 Simulation using the SystemC backend

SystemC simulation is performed exactly as detailed is Sec 8.2 (make systemc.makefile; make systemc.run)
with some specific options, as shown in Listing 9.1. The -sc_stop_when_idle option is used to automat-
ically stop the simulation after a given period of inactivity (1000 ns here, i.e. 100 clock cycles3). The
-sc_dump_fifo_stats option is used to get a precise report on FIFO occupation in order to tune the VHDL
backend. The resulting file, sobel_fifo_stats.dat is reproduced in Listing 9.4. A visual inspection of the
result image shows that it identical to the one obtained using the interpreter.

Listing 9.3: Application-specific Makefile for simulating wth SystemC the application given in Listing. 3.5� �
SC OPTS = −I $ (CAPHLIB) −s c abb r ev d c c t o r s −s c s t op when i d l e 1000

−suppr e s s ca s t warn ing s −s c dump f i f o s t a t s −D i f i l e=pcb . txt −D thre sho ld=80� �
2These channels are those “looping around” the conv233 actors in Fig. 3.4.
3The default clock period is 10 ns when using the SystemC backend. This can be adjusted with the sc clock period option.

51

Listing 9.4: File sobel fifo stats.dat produced by the SystemC backend for the application given in List-
ing. 3.5� �
w11 f i f o s i z e = 3
w3 f i f o s i z e = 3
w2 f i f o s i z e = 142
w1 f i f o s i z e = 142
w6 f i f o s i z e = 3
w5 f i f o s i z e = 142
w4 f i f o s i z e = 142
w8 f i f o s i z e = 3
w7 f i f o s i z e = 3
w9 f i f o s i z e = 3
w10 f i f o s i z e = 3� �
9.3 Simulation using the VHDL backend

Again, this is very similar to what has been described in the previous chapter. The relevant line in the project
file concerns the VHDL_OPTS macro. The -vhdl_annot_file option is crucial here. It gives the name of the
annotation file generated by the previous SystemC execution (sobel_fifo_stats.dat here) to ensure correct
sizing of the FIFOs in the final VHDL design (by default, FIFOs have a depth of only 4). Concerning the
GHDL_RUN_OPTS macro, the value specified for the --stop-time option has here been derived from the final
time reported by the execution of the SystemC code (154340 ns). Simulation is a bit longer than with SystemC
(about ten seconds) and produce the same result image.

9.4 VHDL synthesis

Synthesis results for the application described by the main_net.vhd toplevel file on a Cyclone III FPGA with
Quartus II are as follows :

• total logic elements : 828/119088 (< 1%) (combinational function : 682, dedicated logic registers : 512)

• total memory bits : 6864/3981312 (< 1%)

• IO pins : 23

• maximum clock frequency : 63.7 MHz

9.5 Centered vs. shifted convolution

As evidenced by Eq. (3.1), the conv233 actor used in the previous sections implements a so-called shifted
convolution : the output image is actually “shifted” one line down and one pixel right relatively to the input
image. This can be easily explained by the fact that, since this actor operates on-the-fly on the input data
streams, it can only use pixels which are “behind” the current pixel. This is illustrared in Fig. 9.2-a, in which the
current pixel is yij and the “past” pixels are those shaded in gray. In this context, the “computation pattern”
of Eq. (3.1) is represented by Fig. 9.2-b. More generally, with this formulation, for a M ×N convolution, the
output image would be shifted M − 1 lines down and N − 1 pixels right.

In certain situations, this “shifting” effect is not desirable and one would prefer a more classical definition of
the convolution, in which the convolution kernel is “centered” around the current pixel, as illustrated in Fig. 9.3.
The CAPH standard library therefore provides “centered” versions of 1D and 2D convolutions for several kernel
dimensions. The program mkconv, described in App F of the reference manual, also has an option to generate
centered convolution for any (odd) kernel dimensions.

In our case, the only modification is to replace the conv233 actor in Listing 3.5 by its centered counterpart
cconv233. This modification is denoted in Listing 9.5 (in which only modified lines have been reproduced).

52

yij

j

i

j

xi-2,j-2 xi-2,j-1 xi-2,j

xi-1,j-2 xi-1,j-1 xi-1,j

xi,j-2 xi,j-1
xi,j
yi,j

i

k0,0 k0,1 k0,2

k1,0 k1,1 k1,2

k2,0 k2,1 k2,2

-a- -b-

Figure 9.2: Shifted convolution

j

xi-1,j-1 xi-1,j xi-1,j+1

xi,j-1
xi,j
yi,j

xi,j+1

xi+1,j-1 xi+1,j xi+1,j+1i

k0,0 k0,1 k0,2

k1,0 k1,1 k1,2

k2,0 k2,1 k2,2

Figure 9.3: Centered convolution

53

Listing 9.5: Modification of listing 3.5 to use centered convolution� �
1 . . .
2 net gx = cconv233 ([[1 , 0 , −1] , [2 ,0 , −2] , [1 , 0 , −1]] , 0 , 0) i ;
3 net gy = cconv233 ([[1 , 2 , 1] , [0 , 0 , 0] , [−1 ,−2 ,−1]] , 0 , 0) i ;
4 . . .� �

Simulation results with the interpreter are unchanged, except for the result image, which of course is no
longer shifted and the channel occupation report, as shown in Listing 9.6.

Listing 9.6: FIFO occupation reported by the interpreter for the application using centered convolution actors

W3: occ=0/256 max=107

W2: occ=0/256 max=143

W1: occ=0/256 max=143

W6: occ=0/256 max=107

W5: occ=0/256 max=143

W4: occ=0/256 max=143

W8: occ=0/256 max=2

W7: occ=0/256 max=2

W9: occ=0/256 max=2

W10: occ=0/256 max=2

Note that, compared with the results obtained with the shifted convolution actors, the occupation of channels
W3 and W6 can now grow to 107 places. A visualisation of the application dataflow graph (with the -dot and
-dot_show_indexes options) shows that these channels are those connecting the i input to the cconv233

actors. The reasons for this is that centered convolution actors, contrary to shifted convolution actors, requires
a “flushing” phase at the end of each line of the image and the end of each image. This phase is needed to
empty the FIFOs which are used to memorize previous lines and pixels. During this phase, no input can be
read and if any are available, they accumulates on the FIFOs connected to the actor inputs.

The same behavior can be observed with the SystemC simulation : the file main_fifo_stats.dat obtained
with option -sc_dump_fifo_stats reports a maximum occupation of 108 for the two FIFOs connecting input
i to the actors cconv2334. As explained in Sec. 9.5.5 of the reference manual, this “accumulation” effect can
be eliminated by inserting blanking clock cycles at the end of each line and each image. If one pixel is injected
per clock period, the amount of horizontal (resp. blanking) for a M × N convolution should be equal to N
(resp L× (M − 1)/2), where L is the width of the input images (number of pixel per column). In our case, this
gives respective values of 5 and 140. This is achieved by modifying the SystemC-related options in the project
file as illustrated in Listing 9.7. Note that we also had to increase the “idle time” used to detect the end of the
simulation because of the inserted blanking cycles.

Listing 9.7: Modified project file for SystemC simulation (with centered convolution actors and blanking)� �
. . .
SC OPTS = −D i f i l e=pcb . txt −D thre sho ld=80 −s c abb r ev d c c t o r s −s c s t op when i d l e 2000

−suppr e s s ca s t warn ing s −s c dump f i f o s t a t s −s c i s t r eam hb lank 4
−s c i s t r eam vb lank 140

. . .� �
Blanking can also – and actually should if simulation is expected to reflect “real” behavior on the target

hardware, as explained in Sec 9.5.5 of the reference manual – be simulated at the VHDL level. For this, the
-vhdl_istream_blanking must be passed to the CAPH compiler and the option -hblank (resp. vblank) passed
to txt2bin program. This is here achieved by modifying the project file as illustrated in Listing 9.8.

Listing 9.8: Modified project file for VHDL simulation (with centered convolution actors and blanking)� �
. . .
VHDL OPTS = −D i f i l e=pcb .pgm −D thre sho ld=80 −suppr e s s ca s t warn ing s −vhd l a n n o t f i l e

m a i n f i f o s t a t s . dat −vhd l i s t r eam b lank ing

4The difference of 1 with the value obtained with the interpreter is not significant here.

54

. . .� �

55

Bibliography

[1] J. Sérot. CAPH Reference Manual. Available online at caph.univ-bpclermont.fr

[2] The Graphviz Graph Visualization Software. Available online at www.graphviz.org

[3] The GHDL VHDL Simulator. Available online at gna.org/projects/ghdl

[4] The GTKWave Software. Available online at gtkwave.sourceforge.net

[5] The Value Change Dump file format. en.wikipedia.org/wiki/Value_change_dump

[6] The NetPBM grayscale file format. netpbm.sourceforge.net/doc/pgm.html

[7] GpStudio : a Toolchain for FPGA-based smart camera. gpstudio.univ-bpclermont.fr

[8] Minimalist GNU for Windows www.mingw.org

[9] Linux for Windows www.cygwin.com

56

Contents

I The Caph language 2

1 Dataflow programming 3
1.1 From sketch to code . 4
1.2 Writing the source code . 4

2 Dealing with images 8
2.1 Representation of images . 8
2.2 Processing images . 9

3 Image processing 11

II The Caph IDE 15

4 Basic usage 17

5 Working with projects 23
5.1 Creating a project . 23
5.2 Opening an existing project . 24

6 Compilation options 28

III Makefile-based design with Caph 29

7 Using the caphc compiler 31
7.1 Configuring . 31
7.2 Viewing the dataflow graph . 31
7.3 Simulating the program . 32
7.4 Simulation using the interpreter . 32
7.5 Simulation using the SystemC backend . 33
7.6 Generating and simulating VHDL code . 35
7.7 Synthetizing the VHDL code . 36

8 Dealing with images 46
8.1 Simulation . 47
8.2 Simulation using the SystemC backend . 48
8.3 Generating and simulating VHDL code . 49

9 Image processing 50
9.1 Simulation using the interpreter . 50
9.2 Simulation using the SystemC backend . 51
9.3 Simulation using the VHDL backend . 52
9.4 VHDL synthesis . 52

57

9.5 Centered vs. shifted convolution . 52

58

