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Abstract—Cyber-physical systems combine a cyber side (com-
puting and networking) with a physical side (mechanical, electri-
cal, and chemical processes). In many cases, the cyber component
controls the physical side using sensors and actuators that
observe the physical system and actuate the controls. Such
systems present the biggest challenges as well as the biggest
opportunities in several large industries, including electronics,
energy, automotive, defense and aerospace, telecommunications,
instrumentation, industrial automation.

Engineers today do successfully design cyber-physical systems
in a variety of industries. Unfortunately, the development of
systems is costly, and development schedules are difficult to stick
to. The complexity of cyber-physical systems, and particularly
the increased performance that is offered from interconnecting
what in the past have been separate systems, increases the design
and verification challenges. As the complexity of these systems in-
creases, our inability to rigorously model the interactions between
the physical and the cyber sides creates serious vulnerabilities.
Systems become unsafe, with disastrous inexplicable failures that
could not have been predicted. Distributed control of multi-scale
complex systems is largely an unsolved problem.

A common view that is emerging in research programs in
Europe and the US is “enabling contract-based design (CBD),”
which formulates a broad and aggressive scope to address urgent
needs in the systems industry. We present a design methodology
and a few examples in controller design whereby contract-
based design can be merged with platform-based design to
formulate the design process as a meet-in-the-middle approach,
where design requirements are implemented in a subsequent
refinement process using as much as possible elements from a
library of available components. Contracts are formalizations of
the conditions for correctness of element integration (horizontal
contracts), for lower level of abstraction to be consistent with the
higher ones, and for abstractions of available components to be
faithful representations of the actual parts (vertical contracts).

I. INTRODUCTION

System industry that includes automotive, avionics and con-
sumer electronics companies are facing significant difficulties
due to the exponentially rising complexity of their products
coupled with increasingly tight demands on functionality,
correctness, and time-to-market. The cost due to being late to
market or due to imperfections in the products is staggering as
witnessed by the recent recalls and delivery delays that system
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industries had to bear. There are examples of the devastating
effects that design problems may cause.

The specific root causes of these problems are complex and
relate to a number of issues ranging from design processes and
relationships with different departments of the same company
and with suppliers1 to incomplete requirement specification
and testing.2

In addition, there is a widespread consensus in the industry
that there is much to gain by optimizing the implementation
phase that today is only considering a very small subset of the
design space. Some attempts at a more efficient design space
exploration have been afoot but there is a need to formalize
the problem better and to involve in major ways the different
players of the supply chain. Information about the capabilities
of the subsystems in terms of timing, power consumption, size,
weight and other physical aspects transmitted to the system
assemblers during design time would go a long way in pro-
viding a better opportunity to design space exploration. In this
landscape, a wrong turn in a system design project could cause
an important economic, social and organizational upheaval
that may imperil the life of an entire company. No wonder
that there is much interest in risk management approaches to
assess risks associated to design errors, delays, recalls and
liabilities. Finding appropriate countermeasures to lower risks
and to develop contingency plans is then a mainstay of the way
large projects are managed today. The overarching issue is the
need of a substantive evolution of the design methodology
in use today in system companies. The issue to address is the
understanding of the principles of system design, the necessary
change to design methodologies, and the dynamics of the
supply chain. Developing this understanding is necessary to
define a sound approach to the needs of the system companies
as they try to serve their customers better, to develop their
products faster and with higher quality.

The focus of this paper is on cyber-physical systems
(CPS) [13], [43], [28]. Cyber-physical systems are integrations
of computation with physical processes. Embedded computers

1Toyota sticky accelerator problem came in part from components provided
by two contractors whose interaction was not verified appropriately, Airbus
delay problems were in part due to contractors who had different versions of
the CAD software

2Boeing stated that a structural problem was discovered late in the design
process
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and networks monitor and control the physical processes,
usually with feedback loops where physical processes affect
computations and vice versa.

The emerging applications of cyber-physical systems are
destined to run in distributed form on a platform that meshes
high performance compute clusters (the infrastructure core)
with broad classes of mobiles in turn surrounded by even larger
swarms of sensors (from the very large to the microscopic).
The broad majority of these new applications can be classified
as “distributed sense and control systems” that go substantially
beyond the “compute” or “communicate” functions, tradition-
ally associated with information technology. These applica-
tions have the potential to radically influence how we deal with
a broad range of crucial problems facing our society today: for
example, national security and safety, including surveillance,
energy management and distribution, environment control,
efficient and reliable transportation and mobility, and effective
and affordable health care. A recurring property of these
applications is that they engage all the platform components
simultaneously — from data and computing services on the
cloud of large-scale servers, data gathering from the sensory
swarm, and data access on the mobiles. Another property
is that the resulting systems span many scales — in space
(from the very large to the very small), in time (from the
very fast to the very slow), in function (consisting of complex
hierarchies of heterogeneous functionalities), and in technol-
ogy (integrating a broad range of diverse technologies). Each
of the components of this distributed platform (compute and
data clusters, mobiles/portables, and sensory systems) forms a
multi-scale system on its own, and offers some unique design
challenges.

Engineers today do successfully design cyber-physical sys-
tems in a variety of industries. Unfortunately, the development
of systems is costly, and development schedules are difficult
to stick to. The complexity of cyber-physical systems, and
particularly the increased performance that is offered from
interconnecting what in the past have been separate systems,
increases the design and verification challenges. As the com-
plexity of these systems increases, our inability to rigorously
model the interactions between the physical and the cyber
sides creates serious vulnerabilities. Systems become unsafe,
with disastrous inexplicable failures that could not have been
predicted.

The challenges in the realization and operation of these
multi-scale systems are manifold, and cover a broad range of
largely unsolved design and run-time problems. These include:
modeling and abstraction, verification, validation and test,
reliability and resiliency, multi-scale technology integration
and mapping, power and energy, security, diagnostics, and
run-time management. Failure to address these challenges
in a cohesive and comprehensive way will most certainly
delay if not prohibit the widespread adoption of these new
technologies.

We believe the most promising means to address the chal-
lenges in systems engineering of cyber-physical systems is
to employ structured and formal design methodologies that

seamlessly and coherently combine the various dimensions
of the multi-scale design space (be it behavior, space or
time), that provide the appropriate abstractions to manage
the inherent complexity, and that can provide correct-by-
construction implementations.

The following technology issues must be addressed when
developing new approaches to system design:

• The overall design flows for heterogeneous systems —
meant here both in a technical and also an organizational
sense — and the associated use of models across tradi-
tional boundaries are not well developed and understood.

• The verification of “complex systems,” particularly at
the system integration phase, where any interactions are
complicated and extremely costly to address, is a common
need in defense, automotive, and other industries.

• Dealing with variability, uncertainty, and life-cycle issues,
such as extensibility of a product family, are not well-
addressed using available systems engineering methodol-
ogy and tools.

• System requirement capture and analysis is in large
part a heuristic process, where the informal text and
natural language-based techniques in use today are facing
significant challenges. Formal requirement engineering
is in its infancy: mathematical models, formal analysis
techniques and links to system implementation must be
developed.

• Design-space exploration is rarely performed adequately,
yielding suboptimal designs where the architecture se-
lection phase does not consider extensibility, re-usability,
and fault tolerance to the extent that is needed to reduce
cost, failure rates, and time-to-market.

The design technology challenge is to address the entire
process and not to consider only point solutions of methodol-
ogy, tools, and models that ease part of the design. Addressing
this challenge calls for new modeling approaches that can mix
different physical systems, control logic, and implementation
architectures. In doing so, existing approaches, models, and
tools must be subsumed and not eliminated to ensure that
designers can evolve smoothly their design methods and do not
reject the proposed design innovations. In particular, a design
platform has to be developed to host the new techniques and
to integrate a set of today’s poorly interconnected tools.

A common view that is emerging in research programs in
Europe and the US is “enabling contract-based design,” which
formulates a broad and aggressive scope to address urgent
needs in the systems industry. Contracts in the layman use
of the term are established when an OEM must agree with
its suppliers on the subsystem or component to be delivered.
Contracts involve a legal part binding the different parties
and a technical annex that serves as a reference regarding the
entity to be delivered by the supplier. Contracts can also be
used through their technical annex in concurrent engineering,
when different teams develop different subsystems or different
aspects of a system within a same company. In our view of
the term, contracts can be actually used everywhere and at
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all stages of system design, from early requirements capture,
to embedded computing infrastructure and detailed design
involving circuits and other hardware. In particular, contracts
explicitly handle pairs of properties, respectively representing
the assumptions on the environment and the promises of the
system under these assumptions. More formally, a contract is
a pair C = (A,G) of {Assumptions, Promises}, where both
A and G are properties satisfied by the set of all inputs and
all outputs of a design.

Assume/Guarantee reasoning has been known for quite
some time, but it has been used mostly as verification mean for
the design of software. Our purpose is much more ambitious:
contract based design with explicit assumptions is a design
philosophy that should be followed all along the design, with
all kinds of models, whenever necessary. Here, the models
we mean are rich — not only profiles, types, or taxonomy of
data, but also models describing the functions, performances
of various kinds (time and energy), and safety.

To make contract-based design a technique of choice for
system engineers, we must develop:
• Mathematical foundations for contract representation and

requirement engineering that enable the design of frame-
works and tools;

• A system engineering framework and associated method-
ologies and tool sets that focus on system require-
ment modeling, contract specification, and verification for
cyber-physical systems at multiple abstraction layers.

• A systems engineering framework focusing on cross-
boundary design flows that include addressing the organi-
zational impacts of contract design and the evolution over
time of systems, including configuration management.

In this paper, it is our goal to describe contract-based design
in the context of system level design.

In the following sections, we will review methods to cope
with the challenges posed in the introduction. It is indeed our
take that the concept of contract is a unifying view on how to
formalize requirements and rules that appear at all steps of the
design process. Then, we will provide a short formalization of
the notion of contract. Armed with this notion, we show how to
combine contracts with platform-based design to encompass
all other methods. We present a simple control problem to
demonstrate the use of the proposed methodology and we close
the paper presenting potential developments that could make
the use of contracts pervasive in industry.

II. ADDRESSING THE SYSTEM DESIGN CHALLENGES:
METHODOLOGIES

System companies have not yet perceived design method-
ology or tools to be on their critical path; hence they have
not been willing to invest in expensive tools. Clearly, as they
are hitting a wall in the development of the next generation
systems, this situation is rapidly changing. Major productivity
gains are needed and better verification and validation is a
necessity as the safety and reliability requirements become
more stringent and complexity is hitting an all-time high.
Our experience is that many of the design chain problems

are typical of very diverse verticals, the difference between
them being in the importance given to time-to-market and to
the customer appeal of the products versus safety and hard-
time constraints. This consideration motivates the view that a
unified methodology and framework could be used in many
(if not all) industrial vertical domains.

Our view, shared by the research community, is that a
new design science must then be developed to address the
challenges listed above where the physical is married to the
abstract, where the world of analog signals is coupled with
the one of digital processing, and where ubiquitous sensing
and actuation make our entire environment safer and more
responsive to our needs. System design should be based on
the new design science to address the industry and society
needs in a fundamental way. However, the present directions
are not completely clear as the new paradigm has not yet
fully emerged in the design community with the strength
necessary to change the design technology landscape, albeit
researchers have chartered the field with increasing clarity. We
do believe that system design needs to be concerned about the
entire industrial supply chain that spans from customer-facing
companies to subsystem and component suppliers, since the
health of an industrial sector depends on the smooth interaction
among the players of the chain as if they were part of the
same company. In this section we review some of the proposed
system-design methods in place to cope with these challenges,
from the point of view of the system, the supply chain, and
the development process including requirement capture and
optimization.

A. Coping with complexity of systems

Multiple lines of attack have been developed by research
institutions and industry to cope with the exponential growth
in systems complexity, starting from the iterative and incre-
mental development several decades ago [27]. Among them, of
particular interest to the development of embedded controllers
are: Layered design, Component-based design, the V-model
process, Model-based development, Virtual integration and
Platform-Based Design. We review them next.

1) Layered design: Layered design copes with complexity
by focusing on those aspects of the system pertinent to support
the design activities at the corresponding level of abstraction.
This approach is particularly powerful if the details of a
lower layer of abstraction are encapsulated when the design
is carried out at the higher layer. Layered approaches are well
understood and standard in many application domains. As an
example, consider the AUTOSAR standard,3. This standard
defines several abstraction layers. Moving from “bottom”
to “top”, the micro-controller abstraction layer encapsulates
completely the specifics of underlying micro-controllers, the
second layer abstracts from the concrete configuration of the
Electronic Control Unit (ECU), the employed communication
services and the underlying operating system, whereas the
(highest) application layer is not aware of any aspect of

3See http://www.autosar.org/
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possible target architectures, and relies on purely virtual com-
munication concepts in specifying communication between
application components. Similar abstraction levels are defined
by the ARINC standard in the avionic domains.

The benefits of using layered design are manifold. Using
the AUTOSAR layer structure as example, the complete
separation of the logical architecture of an application (as
represented by a set of components interconnected using the
so-called virtual function bus) and target hardware is a key
aspect of AUTOSAR, in that it supports complete decoupling
of the number of automotive functions from the number of
hardware components. In particular, it is flexible enough to
mix components from different applications on one and the
same ECU. This illustrates the double role of abstraction
layers, in allowing designers to focus completely in this
case on the logic of the application and abstracting from
the underlying hardware, while at the same time imposing a
minimal (or even no) constraint on the design space of possible
hardware architectures. In particular, these abstractions allow
the application design to be re-used across multiple platforms,
varying in number of bus-systems and/or number and class of
ECUs. These design layers can, in addition, be used to match
the boundaries of either organizational units within a company,
or to define interfaces between different organizations in the
supply chain.

The challenge, then, rests in providing the proper abstrac-
tions of lower-level design entities. which must meet the
double criteria of, on one hand, being sufficiently detailed
to support virtual integration testing even with respect to
non-functional viewpoints on the next higher level, while at
the same time not overly restricting the space of possible
lower-level implementations. As a concrete example, consider
the AUTOSAR application layer and an application requiring
guaranteed service under a given failure hypothesis. Such
failure hypothesis would typically relate both to failures ob-
servable on the application layer itself (such as a component
sending an incorrect value, a component flushing its neighbors
with unwanted messages), as well as to failures depending
on the underlying (unknown!) target hardware. This points to
an inherent dilemma: on one side, the desire of completely
abstracting from the underlying hardware, while at the same
time wishing to perform analysis of properties which inher-
ently depend on it.

Using what we call vertical assumptions as abstractions of
the underlying target hardware can solve this dilemma. Re-
turning to the above example, such vertical assumptions could
explicate the failure hypothesis of either execution platforms or
communication platforms, and thus decorate either (individual
Runnables4) components or entities of the virtual function bus.
In more general terms, any logical communication must be
seen as a (fictitious) component itself, which, at deployment
time, will be mapped to communication services of the oper-

4Runnables are defined in the virtual bus function specifications of
AUTOSAR. Runnable entities are the smallest code-fragments that are
provided by the component and are (at least indirectly) a subject for scheduling
by the operating system.

ating system.
2) Component-based design: Whereas layered designs de-

compose complexity of systems “vertically”, component-based
approaches reduce complexity “horizontally” whereby designs
are obtained by assembling strongly encapsulated design enti-
ties called “components” equipped with concise and rigorous
interface specifications. Re-use can be maximized by finding
the weakest assumptions on the environment sufficient to es-
tablish the guarantees on a given component implementation.
While these interface specifications are key and relevant for
any system, the “quality attribute” of perceiving a subsystem
as a component is typically related to two orthogonal criteria,
that of “small interfaces”, and that of minimally constraining
the deployment context, so as to maximize the potential for
re-use. “Small interfaces”, i.e., interfaces which are both small
in terms of number of interface variables or ports, as well as
“logically small”, in that protocols governing the invocation of
component services have compact specifications not requiring
deep levels of synchronization, constitute evidence of the suc-
cess of encapsulation. The second quality attribute is naturally
expressible in terms of interface specifications, where re-use
can be maximized by finding the weakest assumptions on the
environment sufficient to establish the guarantees on a given
component implementation.

One challenge, then, for component-based design of em-
bedded systems, is to provide interface specifications that are
rich enough to cover all phases of the design cycle. This
calls for including non-functional characteristics as part of
the component interface specifications, which is best achieved
by using multiple viewpoints. Current component interface
models, in contrast, are typically restricted to purely functional
characterization of components, and thus cannot capitalize on
the benefits of virtual integration testing, as outlined above.

The second challenge is related to product line design,
which allows for the joint design of a family of variants of a
product. The aim is to balance the contradicting goals of striv-
ing for generality versus achieving efficient component im-
plementations. Methods for systematically deriving “quotient”
specifications to compensate for “minor” differences between
required and offered component guarantees by composing a
component with a wrapper component (compensating for such
differences as characterized by quotient specifications) exists
for restricted classes of component models [36].

3) The V-model of the design process: A widely accepted
approach to deal with complexity of systems in the defense
and transportation domain is to structure product development
processes along variations of the V diagram shown in Figure 1,
originally developed for defense applications by the German
DoD.5

Its characteristic V-shape splits the product development
process into a design and an integration phase. Specifically,
following product level requirement analysis, subsequent steps
would first evolve a functional architecture supporting product
level requirements. Sub-functions are then re-grouped taking

5See e.g. http://www.v-model-xt.de
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Figure 1. The V Model.

into account re-use and product line requirements into a logical
architecture, whose modules can be developed independently,
e.g., by different subsystem suppliers. The realization of such
modules often involves mechatronic design. The top-level
of the technology-oriented architecture would then show the
mechatronic architecture of the module, defining interfaces
between the different domains of mechanical, hydraulic, elec-
trical, and electronic system design, such as exemplified below
for the mechatronic architecture of a simplified aircraft braking
system. Subsequent phases would then unfold the detailed
design for each of these domains, such as the design of the
electronic subsystem involving among others the design of
electronic control units. These design phases are paralleled
by integration phases along the right-hand part of the V,
such as integrating basic- and application software on the
ECU hardware to actually construct the electronic control unit,
integrating the complete electronic subsystems, integrating the
mechatronic subsystem to build the module, and integrating
multiple modules to build the complete product. Not shown,
but forming an integral part of V-based development processes
are testing activities, where at each integration level test-
suites developed during the design phases are used to verify
compliance of the integrated entity to their specification.

This presentation is overly simplistic in many ways. The
design of electronic components in complex systems such
as aircrafts inherently involves multi-site, multi-domain and
cross-organizational design teams, reflecting, e.g., a parti-
tioning of the aircraft into different subsystems (such as
primary and secondary flight systems, cabin, fuel, and wing),
different domains such as the interface of the electronic
subsystem to hydraulic and/or mechanical subsystems, control-
law design, telecommunications, software design, hardware
design, diagnostics, and development-depth separated design
activities carried out at the OEM and supplier companies.
This partitioning of the design space (along perspectives and
abstraction layers) naturally lends itself to a parallelization of
design activities, a must in order to achieve timely delivery of
the overall product, leading often into the order of hundreds
of concurrent design processes.

Secondly, each of these sub-processes will have its own

design basis, as determined by the role of an organization in
the supplier chain. As previously pointed out in the section of
layered design, abstraction levels define, then, what is seen as
basic design-unit at a given level in the supplier hierarchy,
such as on the module-level (such as an aircraft- engine),
the ECU level (such as in traditional automotive development
processes, where tier 1 suppliers were providing a complete
ECU implementing a single new vehicle function), or the
microprocessor layer. This approach is further elaborated in
the section on platform-based design below.

Third, and tightly linked to the previous item, is the observa-
tion, that re-use strategies such as component-based design and
product line design lead to separate design activities, which
then short-cut or significantly reduce the effort both in design
and integration steps in the individual sub-processes for an
individual product.

Finally, Figure 2 indicates the need of supporting processes
for key viewpoints, such as for safety, where domain stan-
dards prescribe activities to be carried out during product
development, which are often anchored with separate roles
in the organization, e.g. Airbus Recommended Practices 4754
prescribes the activities in a safety assessment process as
well as its interface to the aircraft development process,
ultimately yielding a safety case to be approved by certification
authorities.
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Figure 2. The technical architecture of an airplane braking system.

4) Model-Based Development: Model-based development
(MBD) is today generally accepted as a key enabler to
cope with complex system design due to its capabilities
to support early requirement validation and virtual system
integration. MBD-inspired design languages and tools such
as SysML6 [33] and/or AADL [35] for system level model-
ing, Catia and Modelica [18] for physical system modeling,

6http://www.omg.org/spec/SysML/
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Matlab-Simulink [23] for control-law design, and UML7 [7],
[31] Scade [6] and TargetLink for detailed software design,
depend on design layer and application class. The state-of-
the-art in MBD includes automatic code-generation, simula-
tion coupled with requirement monitoring, co-simulation of
heterogeneous models such as UML and Matlab-Simulink,
model-based analysis including verification of compliance
of requirements and specification models, model-based test-
generation, rapid prototyping, and virtual integration testing
as further elaborated below.

In MBD today non-functional aspects such as performance,
timing, power or safety analysis are typically addressed in
dedicated specialized tools using tool-specific models, with
the entailed risk of incoherency between the correspond-
ing models, which generally interact. To counteract these
risks, meta-models encompassing multiple views of design
entities, enabling co-modeling and co-analysis of typically
heterogeneous viewpoint specific models have been developed.
Examples include the MARTE UML [32] profile for real-
time system analysis, the SPEEDS HRC metamodel [37] and
the Metropolis semantic meta-model [2], [11], [3], [41]. In
Metropolis multiple views are accommodated via the concept
of “quantities” that annotate the functional view of a design
and can be composed along with subsystems. Quantities are
equipped with an “algebra” that allows quantities associated
to compositions of subsystems to be computed from the
quantities of each of the subsystems. Multiple quantities such
as timing and power can be handled simultaneously. Along
the same lines, the need to enable integration of point-tools
for multiple viewpoints with industry standard development
tools has been the driving force in providing the SPEEDS
meta-model building on and extending SysML, which has
been demonstrated to support co-simulation and co-analysis
of system models for transportation applications allowing co-
assessment of functional, real-time and safety requirements,
and forms an integral part of the meta-model-based inter-
operability concepts of the CESAR (see www.cesarproject.
eu) reference technology platform. The SPEEDS meta-model
building on and extending SysML has been demonstrated to
support co-simulation and co-analysis of system models for
transportation applications allowing co-assessment of func-
tional, real-time and safety requirements. It forms an integral
part of the meta-model-based inter-operability concepts of the
CESAR reference technology platform.

Meta-modeling is also at the center of the model driven
(software) development (MDD) methodology. MDD is based
on the concept of the model-driven architecture (MDA), which
consists of a Platform-Independent Model (PIM) of the ap-
plication plus one or more Platform-Specific Models (PSMs)
and sets of interface definitions. MDA tools then support the
mapping of the PIM to the PSMs as new technologies become
available or implementation decisions change [30]. This is
similar to Platform-Based Design, however the definition of
platform is not fully described in MDD nor are the semantics

7http://www.omg.org/spec/UML/

to be used for embedded software design. The Vanderbilt
University group [24] has evolved an embedded software
design methodology and a set of tools based on MDD.
In their approach, models explicitly represent the embedded
software and the environment it operates in and capture the
requirements and the design of the application, simultane-
ously, using domain-specific languages (DSL). The generic
modeling environment (GME) [24] provides a framework for
model transformations enabling easy exchange of models be-
tween tools and offers sophisticated ways to support syntactic
(but not semantic) heterogeneity. The KerMeta metamodeling
workbench [17] is similar in scope.

5) Virtual Integration: Rather than “physically” integrating
a system from subsystems at a particular level of the right-
hand side of the V, model-based design allows systems to be
virtually integrated based on the models of their subsystem
and the architecture specification of the system. Such virtual
integration thus allows detecting potential integration problems
up front, in the early phases of the V.

Virtual system integration is often a source of heteroge-
neous system models, such as when realizing an aircraft
function through the combination of mechanical, hydraulic,
and electronic systems — virtual system integration then
rests on well defined principles allowing the integration of
such heterogeneous models. Heterogeneous composition of
models with different semantics was originally addressed
in Ptolemy [16] and Metropolis [2], [11], [3] albeit with
different approaches. These approaches have then been further
elaborated in the SPEEDS meta-model of heterogeneous rich
components [10]. Virtual integration involves models of the
functions, the computer architecture with its extra-functional
characteristics (timing and other resources), and the physical
system for control. Some existing frameworks offer significant
support for virtual integration: Ptolemy II, Metropolis, and
RT-Builder. Developments around Catia and Modelica as well
as the new offer SimScape by Simulink provide support for
virtual integration of the physical part at an advanced level.

While virtual integration is already well anchored in many
system companies development processes, the challenge rests
in lifting this from the current level of simulation-based analy-
sis of functional system requirements to rich virtual integration
testing catering as well for non-functional requirements. An
approach to do so is contract-based virtual integration testing,
where both subsystems and the complete system are equipped
with multi-viewpoint contracts. Since subsystems now charac-
terize their legal environments, we can flag situations, where a
subsystem is used out of specification, i.e., in a design context,
for which no guarantees on the subsystems reaction can be
given. Our experience from a rich set of industrial applications
shows that such virtual integration tests drastically reduce the
number of late integration errors.

Instances of virtual integration tests revealing failed integra-
tion early in the V include:

• The lack of a component to provide complete fault isola-
tion (a property presumed by a neighboring subsystem);
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• The lack of a subsystem to stay within the failure
hypothesis assumed by a neighboring subsystem;

• The lack of a subsystem to provide a response within
an expected time-window (a property presumed by a
neighboring subsystem);

• The unavailability of a shared resource such as a bus-
system in a specified time-window;

• Non-allowed memory accesses;
• Glitch rates exceeding specified bounds (a property pre-

sumed by a neighboring subsystem);
• Signal strengths not meeting specified thresholds (a prop-

erty presumed by a neighboring subsystem).
First, the above approach to virtual integration testing is

purely based on the subsystems contract specifications. In
other words, if virtual integration testing is successful, any
implementation of a subsystem compliant to this contract spec-
ification will not invalidate the outcome of virtual integration
testing. Note that using this method the IP of subsystem
suppliers is protected — the only evidence required is the
confirmation that their implementation meets the subsystem
contract specification. Second, assuming that the virtual inte-
gration test was passed successfully, we can verify whether the
system itself meets its contract purely based on the knowledge
of the subsystems contract and the systems architecture (and
evidence that the subsystem implementation is compliant with
this contract).

This entails that, at any level of the supplier hierarchy, the
higher-level organization can — prior to contracting suppliers
— analyze whether the subsystems contracts pass the virtual
integration test and are sufficient to establish the system
requirements. By then basing the contracts to suppliers on the
subsystem contracts, and requiring subsystem suppliers to give
evidence (such as through testing or through formal analysis
methods) that their implementation complies to their contract,
the final integration of subsystems to the complete system will
be free of all classes of integration errors covered by contracts
in the virtual integration test.

B. Coping with the complexity of the supply chain

To ensure coherent product development across complex
supply chains, standardization of design entities, and harmo-
nization/standardization of processes are key trends. There are
multiple challenges in defining technical annexes to contracts
between OEM and suppliers. Specifications used for procure-
ment should be precise, unambiguous, and complete. However,
a recurrent reason for failures causing deep iterations across
supply chain boundaries rests in incomplete characterizations
of the environment of the system to be developed by the
supplier, such as missing information about failure modes
and failure rates, missing information on possible sources for
interferences through shared resources, and missing boundary
conditions. This highlights the need to explicate assumptions
on the design context in OEM-supplier contracts. In the light
of an increased sharing of hardware resources by applications
developed by multiple suppliers, this contract-based approach
seems indispensable for resolving liability issues and allowing

applications with different criticality levels to co-exist (such
as ASIL levels[42], [1] in automotive).

1) Standardization of design entities: By agreeing on (do-
main specific) standard representations of design entities,
different industrial domains have created their own lingua
franca, thus enabling a domain wide shared use of design
entities based on their standardized representation. Exam-
ples of these standards in the automotive sector include the
recently approved requirement interchange format standard
RIF8, the AUTOSAR9 de-facto standard, the OSEK10 operat-
ing system standard, standardized bus-systems such as CAN11

and Flexray12, standards for “car2X” communication, and
standardized representations of test supported by ASAM13.
Examples in the aerospace domain include ARINC stan-
dards14 such as the avionics applications standard interface,
IMA, RTCA15 communication standards. In the automation
domain, standards for interconnection of automation devices
such as Profibus16 are complemented by standardized design
languages for application development such as Structured Text.

As standardization moves from hardware to operating sys-
tem to applications, and thus crosses multiple design layers,
the challenge increases to incorporate all facets of design
entities required to optimize the overall product, while at the
same time enabling distributed development in complex supply
chains. As an example, to address the different viewpoints
required to optimize the overall product, AUTOSAR extended
in transitioning from release 3.1 to 4 its capability to capture
timing characteristics of design entities, a key prerequisite for
assessing alternate deployments with respect to their impact
on timing. More generally, the need for overall system op-
timization calls for the standardization of all non-functional
viewpoints of design entities, an objective yet to be achieved
in its full generality.

2) Standardization/harmonization of processes: Harmoniz-
ing or even standardizing key processes (such as development
processes and safety processes) provides for a further level
of optimization in interactions across the supply chain. As an
example, Airbus Directives and Procedures (ADBs) provide
requirements for design processes of equipment manufactures.
Often, harmonized processes across the supply chain build
on agreed maturity gates with incremental acceptance testing
to monitor progress of supplier development towards final
acceptance, often building on incremental prototypes. Shared
use of Product Lifcycle Management (PLM) [38] databases
across the supply chain offers further potentials for cross-
supply chain optimization of development processes. Also, in

8http://www.w3.org/2005/rules/wiki/RIF_Working_Group
9http://www.autosar.org/
10http://www.osek-vdx.org/
11http://www.iso.org/iso/search.htm?qt=Controller+Area+

Network&searchSubmit=Search&sort=rel&type=simple&published=true
12http://www.flexray.com/
13http://www.asam.net/
14http://www.aeec-amc-fsemc.com/standards/index.html
15http://www.rtca.org/
16http://www.profibus.com/
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domains developing safety related systems, domain specific
standards clearly define the responsibilities and duties of
companies across the supply chain to demonstrate functional
safety, such as in the ISO 2626217 for the automotive domain,
IEC 6150818 for automation, its derivatives Cenelec EN 50128
and 5012619 for rail, and Do 178 B20 for civil avionics.

Yet, the challenge in defining standards rests in balancing
the need for stability with the need of not blocking process
innovations. As an example, means for compositional con-
struction of safety cases are seen as mandatory to reduce
certification costs in the aerospace and rail domains. Similarly,
the potential of using formal verification techniques to cope
with increasing system complexity is considered in the move
from DO 178 B to DO 178 C standards.

C. Getting initial requirements right

Depending on application domains, up to 50% of all errors
result from imprecise, incomplete, or inconsistent and thus
unfeasible requirements. Out of the many approaches taken
in industry for getting requirements right, we focus here on
those for initial systems requirements, relying on ISO 26262
compliant approaches.

To cope with the inherently unstructured problem of
(in)completeness of requirements, industry has set up domain-
and application-class specific methodologies. As particular
examples, we mention learning process, such as employed
by Airbus to incorporate the knowledge base of external
hazards from flight incidents, the Code of Practice proposed
by the Prevent Project using guiding questions to assess the
completeness of requirements in the concept phase of the
development of advanced driver assistance systems. Use-case
analysis methods as advocated for UML based development
process follow the same objective. A common theme of these
approaches is the intent to systematically identify those aspects
of the environment of the system under development whose
observability is necessary and sufficient to achieve the system
requirements. Pushing this further again leads to using con-
tracts: based on a determined system boundary, responsibilities
of achieving requirements are split into those to be established
by the system-under-development (the “guarantees” of the
contract) and those characterizing admissible environments
of the system-under-development (the “assumptions” of the
contract).

However, the most efficient way of assessing completeness
of a set of requirements is by executing it. This consists
in what David Harel called “playing out” for the particular
case of live sequence charts [20], [21], [22], i.e., the use of
formalized contract specifications to generate trajectories of
interface observations compliant with the considered set of
contracts. Such simulation capabilities turn out to be instru-
mental in revealing incompleteness: typically, they will exhibit

17http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
18http://www.iec.ch/functionalsafety/
19http://www.cenelec.eu/Cenelec/CENELEC+in+action/Web+Store/

Standards/default.htm
20http://www.do178site.com/

unexpected traces, e.g., due to an insufficient restriction of
the environment, or only partially specified system reactions.
Executing requirements is only possible if semi-formal or
formal specification languages are used, where the particu-
lar shape of such formalizations is viewpoint and domain
dependent. Examples include the use of failure propagation
models for safety contracts, the use of probabilistic timed
automata to specify arrival processes, the use of live sequence
charts for capturing scenarios in the interaction of actors and
systems, or formalized requirement languages such as the
PSL standard [34] combining temporal logic and automata
based specifications used in the EDA domain, or the pattern-
based contract specification language defined by the integrated
project SPEEDS.

In addition, using contracts resting on logic-based for-
malisms comes with the advantage, that “spurious” unwanted
behaviors can be excluded by “throwing in” additional con-
tracts, or strengthening assumptions, or by considering addi-
tional cases for guarantees. A second advantage rests in the
capability of checking for consistency by providing effective
tests, whether a set of contracts is realizable, or whether, in
contrast, facets of these are inherently conflicting, and thus no
implementation is feasible.

D. Coping with multi-layer design optimization

System designs are often the result of modifications of
previous designs with the attempt of minimizing risks and
reducing delays and design costs. While this was an effective
way of bringing new products to market in the past, with the
increase in demand for new functionality and the advances of
the implementation platforms, this strategy has yielded more
problems than it has fixed. Indeed, there is a shared consensus
that in most of the cases the designs are not optimized in
the sense that the full exploitation of the new opportunities
technology offers is not achieved and that having visibility of
the available options and an evaluation framework for design
alternatives are a sorely missing capability.

An ideal scenario for optimization is to have access to the
entire design space at the lowest possible level of abstraction
and then run a global optimization algorithm that could select
these components satisfying constraints and optimizing mul-
tiple criteria involving non-functional aspects of the design.
Unfortunately this approach is obviously out of the question
for most designs given the size of the design space and the
capabilities of optimization algorithms.

What is possible is to select solutions in a pre-selected
design space where the number of alternatives to choose
from is finite and searchable by state-of-the-art optimization
programs. Indeed, the platform-based design paradigm offers
scaffolding that would support this approach. In fact, at any
abstraction layer, we need to optimize with respect to the
components of the platform. The selection process will have
to look only at feasible combinations of the components as
dictated by the composability contracts.
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E. Managing risk across the development process

The realization of complex systems calls for design pro-
cesses that mitigate risks in highly concurrent, distributed,
and typically multi-domain engineering processes, often in-
volving more than one hundred sub-processes. Risk mitigation
measures typically cover all phases of design processes, rang-
ing from ensuring high quality initial requirements to early
assessments of risks in realizability of product requirements
during the concept phase, to enforcing complete traceability
of such requirements with requirements management tools, to
managing consistency and synchronization across concurrent
sub-processes using PLM tools. A key challenge rests in
balancing risk reduction versus development time and effort:
completely eliminating the risks stemming from concurrent
engineering essentially requires a complete synchronization
along a fine-grained milestone structure, which would kill any
development project due to the induced delays.

Current practice leads to typically implicit assumptions
about design aspects to be guaranteed by concurrent processes
— designers are “speculating” on outcomes of concurrent
engineering sub-processes, based on their experiences from
previous designs. These assumptions should be made explicit
— emphasizing once again the high methodological value of
assumptions — and associate these with risk-levels, which
qualify or quantify the expected risks in not achieving such
assumptions [9]. This very same instrument can be put in
place during the concept phase of development processes,
where vertical assumptions form the key basis for assessing
realizability of requirements.

III. CONTRACT MODEL OVERVIEW

In this section we briefly summarize the main concepts
behind contract-based design by presenting a simple generic
contract model centered around the notion of component.
A component is a hierarchical entity that represents a unit
of design. Components are connected together by sharing
and agreeing on the values of certain ports and variables. A
component may include both implementations and contracts.
An implementation M is an instantiation of a component and
consists of a set P of ports and variables (in the following,
for simplicity, we will refer only to ports) and of a set of
behaviors, or runs, also denoted by M , which assign a history
of “values” to ports. Runs are generic and abstract, since
we do not need a predetermined form of behavior for our
basic definitions. The particular structure of the runs is defined
by specific instances of the model. For instance, runs could
be continuous functions that result from solving differential
equations, or sequences of values or events recognized by an
automata model. Our basic definitions will not vary, and only
the way operators are implemented is affected.

We build the notion of a contract for a component as a
pair of assertions, which express its assumptions and promises.
An assertion E is modeled as a set of behaviors over ports,
precisely as the set of behaviors that satisfy it. An implemen-
tation M satisfies an assertion E whenever they are defined
over the same set of ports and all the behaviors of M satisfy

the assertion, i.e., when M ⊆ E. A contract is an assertion
on the behaviors of a component (the promise) subject to
certain assumptions. We therefore represent a contract C as
a pair (A,G), where A corresponds to the assumption, and G
to the promise. An implementation of a component satisfies
a contract whenever it satisfies its promise, subject to the
assumption. Formally, M ∩ A ⊆ G, where M and C have
the same ports. We write M |= C when M satisfies a contract
C.

Intuitively, an implementation can only provide promises
on the value of the ports it controls. On ports controlled by
the environment, instead, it may only declare assumptions.
Therefore, we will distinguish between two kinds of ports:
those that are controlled and those that are uncontrolled. Un-
controllability can be formalized as a notion of receptiveness:
for E an assertion, and P ′ ⊆ P a subset of its ports, E is
said to be P ′-receptive if and only if for all runs σ′ restricted
to ports belonging to P ′, there exists a run σ ∈ E such that
σ′ and σ coincide over P ′. In words, E accepts any history
offered to the subset P ′ of its ports. This closely resembles
the classical notion of inputs and outputs in programs and
HDLs; it is more general, however, as it encompasses not only
horizontal compositions within a same layer, but also cross-
layer integration such as the integration between application
and execution platform performed at deployment. Contracts
are therefore enriched with a profile π = (u, c) that partitions
its set of ports.

The combination of contracts associated to different com-
ponents can be obtained through the operation of parallel
composition. If C1 = (A1, G1) and C2 = (A2, G2) are
contracts (possibly over different sets of ports), the composite
must satisfy the guarantees of both, implying an operation
of intersection. The situation is more subtle for assumptions.
Suppose first that the two contracts have disjoint sets of ports.
Intuitively, the assumptions of the composite should be simply
the conjunction of the assumptions of each contract, since the
environment should satisfy all the assumptions. In general,
however, part of the assumptions A1 will be already satisfied
by composing C1 with C2, acting as a partial environment for
C1. Therefore, G2 can contribute to relaxing the assumptions
A1. And vice-versa. The assumption and the promise of the
composite contract C = (π,A, G) can therefore be computed
as follows:

A = (A1 ∩A2) ∪ ¬(G1 ∩G2), (1)
G = G1 ∩G2, (2)

which is consistent with similar definitions in other con-
texts [12], [14], [29]. For the profiles, we enforce the property
that each port should be controlled by at most one contract.
Hence, parallel composition is defined only if the sets of
controlled ports of the contracts are disjoint.

Parallel composition can be used to construct complex con-
tracts out of simpler ones, and to combine contracts of different
components. Despite having to be satisfied simultaneously,
however, multiple viewpoints associated to the same compo-
nent do not generally compose by parallel composition. Take,
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for instance, a functional viewpoint Cf and an orthogonal
timed viewpoint Ct for a component M . Contract Cf specifies
allowed data pattern for the environment, and sets forth the
corresponding behavioral property that can be guaranteed. For
instance, if the environment alternates the values T,F,T, . . .
on port a, then the value carried by port b never exceeds
x. Similarly, Ct sets timing requirements and guarantees on
meeting deadlines. For example, if the environment provides at
least one data per second on port a (1ds), then the component
can issue at least one data every two seconds (.5ds) on port
b. Parallel composition fails to capture their combination,
because the combined contract must accept environments that
satisfy either the functional assumptions, or the timing assump-
tions, or both. In particular, parallel composition computes
assumptions that are too restrictive. We would like, instead,
to compute the conjunction u of the contracts, so that if
M |= Cf uCt, then M |= Cf and M |= Ct. This can best be
achieved by first defining a partial order on contracts, which
formalizes a notion of substitutability, or refinement. We say
that C = (A,G) dominates C ′ = (A′, G′), written C � C ′,
if and only if A ⊇ A′ and G ⊆ G′. Dominance amounts
to relaxing assumptions and reinforcing promises, therefore
strengthening the contract. Clearly, if M |= C and C � C ′,
then M |= C ′.

Given the ordering of contracts, we can compute greatest
lower bounds and least upper bounds, which correspond to
taking the conjunction and disjunction of contracts, respec-
tively. For contracts C1 = (A1, G1) and C2 = (A2, G2) (in
canonical form), we have

C1 u C2 = (A1 ∪A2, G1 ∩G2), (3)
C1 t C2 = (A1 ∩A2, G1 ∪G2). (4)

Conjunction of contracts amounts to taking the union of the
assumptions, as required, and can therefore be used to compute
the overall contract for a component starting from the contracts
related to multiple viewpoints.

Relations between contracts: We have already discussed
two relations that can be established between contracts and
implementations. A relation of satisfaction, that denotes when
an implementation satisfies a contract (i.e., provides the re-
quired promises under the stated assumptions), and a relation
of refinement between contracts, that denotes the process of
concretizing the requirements by strengthening the promises
and relaxing the assumptions. Contracts can also be related
by a notion of consistency and compatibility. Technically,
these two notions refer to individual contracts. In practice,
however, violations of these properties occur as a result of a
parallel composition, so that we can refer to the collection of
components forming a contract as consistent or compatible.

The notion of receptiveness and the distinction between
controlled and uncontrolled ports is at the basis of our re-
lations of consistency and compatibility between contracts.
Our first requirement is that an implementations M with
profile π = (u, c) be u-receptive, formalizing the fact that an
implementation has no control over the values of ports set by

the environment. For a contract C, we say that C is consistent
if G is u-receptive, and compatible if A if c-receptive.

The sets A and G are not required to be receptive. However,
if G is not u-receptive, then the promises constrain the
uncontrolled ports of the contract. In particular, the contract
admits no receptive implementation. This is against our policy
of separation of responsibilities, since we stated that uncon-
trolled ports should remain entirely under the responsibility of
the environment. Corresponding contracts are therefore called
inconsistent.

The situation is dual for assumptions. If A is not c-receptive,
then there exists a sequence of values on the controlled ports
that are refused by all acceptable environments. However, by
our definition of satisfaction, implementations are allowed to
output such sequence. Unreceptiveness, in this case, implies
that a hypothetical environment that wished to prevent a vio-
lation of the assumptions should actually prevent the behavior
altogether, something it cannot do since the port is controlled
by the contract. Therefore, unreceptive assumptions denote the
existence of an incompatibility internal to the contract, that
cannot be avoided by any environment.

IV. PLATFORM-BASED AND CONTRACT-BASED DESIGN

In the previous sections, we reviewed a number of ap-
proaches that tackle the challenges set up in the introduction
and we introduced the basics of contracts. We argue here that
Platform Based Design (PBD) subsumes most of the other
approaches to system level design and for this reason, we will
use it to develop the concept of contract-based design, albeit
the extreme flexibility of contracts allows their universal use
in all methodologies.

Contract-based design can be merged with platform-based
design to formulate the design process as a meet-in-the-middle
approach, where design requirements are implemented in a
subsequent refinement process using as much as possible
elements from a library of available components. Contracts
are formalizations of the conditions for correctness of element
integration (horizontal contracts), for lower level of abstraction
to be consistent with the higher ones, and for abstractions
of available components to be faithful representations of the
actual parts (vertical contracts). A typical use of contracts in
cyber-physical system design would be to govern the horizon-
tal composition of the cyber and the physical components and
to establish the conditions for correctness of their composition.

A. Platform-Based Design

Platform-based design was introduced in the late 1980s
to capture a design process that could encompass horizon-
tal (component-based design, virtual integration) and vertical
(layered and model-based design) decompositions, and multi-
ple viewpoints and in doing so, support the supply chain as
well as multi-layer optimization.

The idea was to introduce a general approach that could
be shared across industrial domain boundaries, that would
subsume the various definition and design concepts, and that
would extend it to provide a rigorous framework to reason
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about design. Indeed, the concepts have been applied to a
variety of very different domains: from automotive, to System-
on-Chip, from analog circuit design, to building automation to
synthetic biology.

The basic tenets of platform-based design are as follows:
The design progresses in precisely defined abstraction layers;
at each abstraction layer, functionality (what the system is
supposed to do) is strictly separated from architecture (how
the functionality could be implemented). This aspect is clearly
related to layered design and hence it subsumes it.

Each abstraction layer is defined by a design platform. A
design platform consists of

• A set of library components. This library not only con-
tains computational blocks that carry out the appropriate
computation but also communication components that are
used to interconnect the computational components.

• Models of the components that represent a characteri-
zation in terms of performance and other non-functional
parameters together with the functionality it can support.
Not all elements in the library are pre-existing com-
ponents. Some may be “place holders” to indicate the
flexibility of “customizing” a part of the design that is
offered to the designer. In this case the models represent
estimates of what can be done since the components are
not available and will have to be designed. At times, the
characterization is indeed a constraint for the implementa-
tion of the component and it is obtained top-down during
the refinement process typical of layered designs. This
layering of abstractions based on mathematical models is
typical of model-based methods and the introduction of
non-functional aspects of the design relates to viewpoints.

• The rules that determine how the components can be
assembled and how the the functional and non-functional
characteristics can be computed given the ones of the
components to form an architecture.Then, a platform rep-
resents a family of designs that satisfies a set of platform-
specific constraints. This aspect is related to component-
based design enriched with multiple viewpoints.

This concept of platform encapsulates the notion of re-use as
a family of solutions that share a set of common features (the
elements of the platform). Since we associate the notion of
platform to a set of potential solutions to a design problem, we
need to capture the process of mapping a functionality (what
the system is supposed to do) with the platform elements that
will be used to build a platform instance or an “architecture”
(how the system does what it is supposed to do). The strict
separation between function and architecture as well as the
mapping process have been highly leveraged in AUTOSAR.
This process is the essential step for refinement and provides a
mechanism to proceed towards implementation in a structured
way. Designs on each platform are represented by platform-
specific design models. A design is obtained by a designer’s
creating platform instances (architectures) via composing plat-
form components (process that is typical of component-based
design), by mapping the functionality onto the components of

the architecture and by propagating the mapped design in the
design flow onto subsequent abstraction layers that are dealt
with in the same way thus presenting the design process as
an iterative refinement. This last point dictates how to move
across abstraction layers: it is an important part of design space
exploration and offers a way of performing optimization across
layers. In this respect PBD supports multiple perspectives in
a general way.

B. Contract-based Design

In PBD, contracts can play a fundamental role in determin-
ing the correct composition rules so that when the architecture
space is explored, only “legal” compositions of available
components are taken into consideration. They can be used to
verify whether the system obtained by composing the library
elements according to the horizontal contracts satisfies the
requirements posed at the higher level of abstraction. If these
sets of contracts are satisfied, the mapping mechanism of PBD
can be used to produce design refinements that are correct by
construction.

To be more precise about these concepts, consider a snap-
shot in a platform based design process, as shown in Figure 3,
covering adjacent design layers N +1, N , and N −1. System
S is realized at layer N by the composition of systems S1,
S2, and S3.

Figure 3. Contracts in a PBD flow.

Horizontal contracts: In this setting, contracts serve
different objectives. As highlighted in the subsection on virtual
integration testing, a key value of contracts is to detect
integration errors early. We use the term horizontal contract
related to virtual integration testing, which thus in Figure 3
define under what conditions the integration of subsystems
into the composite system S is considered successful. Specif-
ically, a horizontal contract CH of a system S represents in
its assumption AH the constraints it itself imposes on any
possible integration context C[ ], so as to be able to realize its
function F .
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As an example of this contract-based virtual integration
testing, consider Figure 3. Each of the subsystems Sj are
equipped with horizontal contracts CH(Sj) = (AH

j , GH
j ).

Contract-based virtual integration testing then requires to be
able to demonstrate all assumptions AH

j from the given
design context. For example, let us consider subsystem S2.
Its design context is in part given by subsystem S1, which
thus becomes responsible for establishing those horizontal
assumptions relating to S2´s in-port p21. Intuitively, then, we
expect the guarantee GH

1 of the horizontal contract of S1 to
be sufficient to demonstrate compliance of any restrictions S2

was placing on allowed uses of p21. Note also the dependency
of S2 on the yet undetermined part of the design context of
S2 reflected by input p3S to the realization of system S on
layer N . In general, then, in contract-based virtual integration
testing, this yet unknown design context is represented by
horizontal contracts of the composed system S itself; Figure 3
highlights the horizontal contract CH

N (S) = (AH
N (S), GH

N (S))
of S at layer N . This contract will enforce, that any design
context of S will be guaranteed to be compliant to AH

N (S).
Thus, when checking the design context of S2 for compliance
to its horizontal assumptions on uses of port p3S , we expect
this to be derivable from AH

N (S). In general, then, in contract-
based virtual integration testing, we need to demonstrate that
all horizontal assumptions of subsystems can be derived from
the conjunction of all horizontal guarantees of subsystems and
horizontal assumptions of the composed system.

Circular reasoning: At the current level of discourse we
point to the fact, that the above argument typically involves
circular reasoning. For example, in Figure 3 GH

1 will only be
guaranteed for legal design contexts of S1. Thus, only once
AH

1 is established, can we actually rest our argumentation
on GH

1 . Establishing, then, AH
1 , we would like to involve

GH
3 , which, however, is only sound once AH

3 is established.
This, finally, would involve GH

2 as witness, but it is exactly
for the purpose of establishing AH

2 , that this reasoning chain
is established. The mathematical theory essentially justifies
the use of such seemingly circular arguments, for classes of
contracts whose assumptions and guarantees are expressible
in the rich set of safety properties (which can always be
proven and disproved by finite observations). However, certain
restrictions on how assumptions and guarantees refer to out-
ports respectively in-ports of a system have to be observed.

Vertical contracts: Each of the subsystems Sj can then
either be further refined, or assumed to be given as design basis
at layer N , as platform library elements. Such components, as
S2 in Figure 3, could be placeholders, to be then elaborated in
a design process at layer N−1. Symmetrically, Figure 3 shows
the system S at layer N as a realization of the placeholder S
at layer N +1. To transition across design layers, we use what
we call vertical contracts.

Specifically, when using placeholder S at layer N + 1,
bottom-up vertical contracts are used to capture what is
expected to be offered by possible implementations of S at
layer N , so as to be able for S to perform its intended function
at layer N + 1 as expressed by a top-down vertical contract.

This entails, that the correctness of the level N + 1 design
hinges on finding an implementation of S meeting this bottom-
up vertical contract.

When using budgeting, the designer assigns responsibilities
to the subsystems of S by deriving top-down contracts for
each, which jointly establish S´s bottom-up vertical contract.
Alternatively, when using a bottom-up approach, we assume
the top-down vertical contracts of Sj as given, and establish
either directly or passing through a characterization of the
functionality realized by S at layer N (as a top-down contract),
that the layer N + 1 bottom up contract of S is satisfied. In
both the top-down and bottom up approach, the verification of
this cross-layer design steps would assume that the contract-
based virtual integration test was successful. This allows using
the guarantees of horizontal contracts as additional premise in
the verification of refinement steps.

We finally point out that additional verification steps are
required for each component to demonstrate that, based on
the expected capabilities of its realization, as expressed by
its bottom-up vertical contract, the functionality of the com-
ponent as expressed by its top-down vertical contract can be
achieved. Again, this proof can take horizontal contracts of the
component as additional supportive arguments. For composed
systems, such as the system S at layer N in Figure 3, the
bottom-up contracts are given by the set of bottom-up contracts
of its leaf components.

Crossing design layers thus asks for verification of either
refinement (top-down) or aggregation (bottom-up) steps. The
presentation given so far ignores extensions of the framework
required in practice to deal with what is often called interface
refinement, e.g., [8], [25]. Due to the very purpose of abstrac-
tion layers of hiding complexity, a representation of a design at
level N will typically explicate implementations aspects such
as representations of messages and variables, protocols used
for communication and synchronization. In general, both the
representation of the system in the data-domain as well as in
the time domain may change, calling for notions of refinement
which are expressive enough to deal both with re-timing
and type conversions. The theory for these notions of weak
simulation relations is well understood for particular classes of
mathematical models (see [19]), which jointly are rich enough
to support a broad spectrum of viewpoints, including safety,
real-time, performance, power.

To allow to build on these in the methodology for contract-
based design, we introduce what we call simulation compo-
nents relating traces, i.e. sequences of observations of ports of
a level N + 1 component S to sequences of observations of
ports of components S at level N . Referring to Figure 3, this
component would thus have an interface towards layer N + 1
observing ports p1S and p2S , and an interface towards layer
N observing ports p1S , p2S , and p3S . Simulation components
can use contracts to characterize the intended inter-relation
between valuations of these. These contracts can take the form
of both logic-based and automata-based formalisms, giving
sufficient expressivity in capturing the intended relations be-
tween traces of interface objects of S at level N +1 and level
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N [4].
Strong vs. weak assumptions and the issue of compatibil-

ity: We close this section by pointing out a subtle, but highly
relevant, difference in the methodological use of assumptions
in horizontal and vertical contracts. Within horizontal con-
tracts, assumptions are used to restrict the allowed design con-
text of a component. By enforcing contract-based virtual inte-
gration testing, as discussed above, we therefore complement
each model-based integration steps with verification activities
demonstrating that the currently known design context C[ ] of
a component S actually complies to these restrictions. This
is key to enforcing what has been called composability of
systems by [26], a fundamental principle in good architecture
design ensuring functionality realized by components of the
architecture are maintained when integrating these into a
compound architecture. It is the purpose of assumptions to
support this composability property. Specifically, if system
S realizes function F (S) (e.g. as expressed in a top-down
vertical contract), and C[ ] meets the contract-based virtual
integration test for S, then S will be guaranteed to offer its
functionality F (S) when being put into this design context
C[ ]. We refer to assumptions which must be enforced for the
component to behave as expected as strong assumptions.

In contrast, additional assumptions may be added to the
strong assumption to ensure that if these assumptions are met,
then “non essential” but desired properties are guaranteed.
These additional assumptions are called in contrast weak
assumptions. In vertical contracts, in particular in bottom-
up contracts, weak assumptions represent anticipations often
based on experience or estimation functions on what could be
assumed to be realizable by lower implementations levels. As
the designs refines vertically across multiple layers, eventually
such assumptions either become validated based on top-down
contracts of completed designs, or invalidated (e.g. due to
insufficient processing power, non-matching assumptions on
failure distributions, or insufficient signal strength). By main-
taining dependency between contracts, it is then possible to
backtrack to the higher-level bottom up assumption which thus
became invalidated, and explore possibilities of weakening,
such as by re-budgeting.

Turning assumptions in vertical contracts to strong assump-
tions would entail a binding restriction of the design space:
a failure to meet such strong vertical assumptions would be
considered a contract failure. Strong vertical assumptions can
be used to enforce compliance to standards, or within the
supply chain hierarchy, to eliminate the likelihood of deep
design iterations crossing organizational boundaries. In a gen-
eralized setting, such as currently pushed in the context of the
German Innovation Alliance for Embedded Systems,21 we thus
allow contracts to refer to both strong and weak assumptions,
allowing to customize design processes supporting additional
use cases of strong assumptions as outlined above.

21See SPES2020 Architecture Modeling Deliverable of the German Inno-
vation Alliance on Embedded Systems SPES 2020,BMBF grant FK 01 IS
O8045 W, http://spes2020.informatik.tu-muenchen.de

V. CONTROL DESIGN AND CONTRACTS WITH AN
EXAMPLE

In this section we present a simple example of control of a
cyber-physical system design that makes use of the contract-
based design methodology. The example, a Water Flow Con-
trol system, was first proposed by the Israel Aerospace Indus-
tries Ltd. (IAI) in the context of the SPEEDS project, and has
been analyzed using hybrid modeling techniques [5]. Here we
present a version using a continuous model to highlight the
use of contracts in a familiar, equation-based notation. We
will discuss how to model the system requirements, as well as
how these are partitioned in assume/guarantee pairs (contracts)
for each component of the system. Different verification and
design activities can be carried out using this model.

A. The Water Flow Control system

A cylindrical water container is equipped with an inlet pipe
at the top, and an outlet pipe at the bottom. The container has
a diameter D = 5m and a height H = 9m. The inlet and
outlet cross sections are Sin = 0.5m2 and Sout = 0.16m2,
respectively. We are to design a system that guarantees a
continuous outlet flow Fout of 1.0 ≤ Fout ≤ 2.0m3/sec,
after 10 seconds since startup. In addition, the system must
guarantee that the container will not overflow, and that the
energy consumption is lower than a limit El. The designer
can assume a constant inlet pressure P ≥ 5, 000pa, and a
maximum evaporation rate ε = 0.25m3/hour.

To formalize the problem, we construct a component rep-
resenting the overall Water Flow Control system, with input,
output and parameters corresponding to the above specifica-
tion. To simplify our task, we decide to make state variables,
such as the water level, visible as primary outputs. The WFC
formal specification is therefore composed of the following
items:
• Input: Inlet pressure P
• Output: Water Level wl, outlet flow rate Fout, energy

consumption E
• Parameters: container size D and H , inlet cross sections

Sin and Sout, evaporation rate ε.
To proceed with the system specification we define a contract
that the implementation must satisfy. The contract distin-
guishes between the assumptions and the guarantees that must
be enforced. Assuming t represents time, the above conditions
can be formally specified as follows:
• Assumptions: P ≥ 5, 000.
• Promises:

∀t.(t ≥ 10 =⇒ (1.0 ≤ Fout ≤ 2.0))
∀t.(wl(t) ≤ H)
E ≤ El

B. Design Solution

There are many ways to guarantee the required properties
given the assumptions. Here we examine a solution method
based on the regulation of the water level. From the Bernoulli
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Law, we know that the outlet flow rate depends on the water
level according to the formula

Fout = V · Sout =
√

2g wl · Sout

where V is the velocity. The water level is therefore given by

wl =
(

Fout

Sout

)2

· 1
2g

.

Thus, the promise 1.0 ≤ Fout ≤ 2.0 is equivalent to having

2.0 ≤ wl ≤ 8.0.

We will therefore approach the problem by controlling the
water level in the container through a valve at the inlet. As a
result, the system will be composed of an inlet valve, the water
container, a water level sensor and a controller that controls
the opening and closing of the valve based on the measured
water level, as shown in Figure 4. Our methodology is the

λ

cmd

out
F

in
F

wl
m

valve container

sensorcontroller

F

wlλ

Figure 4. Block diagram of the Water Flow Control system

following:
• We define for each component the contract that it must

satisfy
• We compose the contracts for each component
• We finally verify that the composite contract refines the

contract for the system, given above.
Having verified the system at the virtual integration level, the
contract theory ensures that a composition of components,
each satisfying its contract, will also satisfy the system spec-
ification.

1) Model for the valve: The inlet flow is controlled by a
valve that may get position commands from the controller. We
denote the valve aperture by λ, where 0 ≤ λ ≤ 1. The valve
is controlled by a signal λcmd, coming from the controller,
whose range is also 0 ≤ λcmd ≤ 1. The position λ of the
valve follows that of the aperture command λcmd at a rate of
0.5/sec.

Assume that F is the flow rate at the input of the valve,
and call Fin the flow rate at the output of the valve, which is
also the flow rate at the input of the container. We can express
Fin as a function of the current valve position as follows:

Fin = F · (0.2λ2 + 0.8λ)

In summary, the sets of inputs and outputs for the valve is
• Input: λcmd, F
• Output: λ, Fin

In this simplified model, the valve must satisfy a contract that
makes no assumption. In practice, one can use the assumption
to limit the range of validity of the model, for example by
requiring that the flow rate at the input be less than a certain
value. This translates, after composition with the rest of the
components, in a requirement on the environment that the
pressure P be less than a certain value. Obviously, if one
such assumption is introduced, the overall contract will not be
satisfied, as no constraint is imposed at the system level for
the pressure P other than it be greater than a certain value.

The valve satisfies the following promises.
• Rate of change of valve position

dλ

dt
= sgn(λcmd(t)− λ(t)) · 0.5

• Flow rate at the output of the valve

Fin = F · (0.2λ2 + 0.8λ)

• The initial position of the valve is closed

λ(0) = 0.

Sometimes it may appear ambiguous whether a certain re-
quirement should be guaranteed by a component, or assumed
from the environment. For instance, one could take the initial
position of the valve as an assumption. The ambiguity dis-
appears when one considers which component is responsible
for setting a certain value. Since the position of the valve is
an output of the valve, it is the valve responsibility to ensure
its initial value, and the requirement is therefore a guarantee.
A valve that does not satisfy this condition will simply not
satisfy the contract.

2) Model for the container and the outlet: The container
is characterized by the following inputs and outputs:
• Input: the inlet flow rate Fin

• Output: the water level wl and the outlet flow rate Fout.
The water level depends on the inlet and the outlet flow rate,
as well as on the evaporation rate ε. We assume that the
evaporation rate is bounded. In order to model this situation,
we must add ε to the set of inputs. Then, the container must
satisfy the following contract.

For the assumptions, we assume that the evaporation rate is
bounded:

∀t.ε(t) ≤ 0.25

The container must ensure the following promises:
• The water level is given by the integral of the difference

between the water coming in and the water going out
(including the evaporation), divided by the base are of
the container. Formally,

∀t, t′. t′ > t =⇒ wl(t′) =

= wl(t) +
1

π(D/2)2

∫ t′

t

(Fin(t′′)− Fout(t′′)− ε(t′′))dt′′

• The outlet water flow is given by the Bernoulli law

Fout = V · Sout =
√

2g wl · Sout
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3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

∀t. 0.95 · wl(t) ≤ wlm(t) ≤ 1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal λcmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm ≤ wlmin =⇒ λcmd = 1
wlm ≥ wlmax =⇒ λcmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

Λ(T ) =
∫ T

0

∣∣∣∣dλ

dt

∣∣∣∣ dt.

The average distance traveled at time T is therefore

Λ(T ) =
Λ(T )

T
.

The energy can be computed using an appropriate constant c

E(T ) = c · Λ(T ) = c · Λ(T )
T

.

The total energy is therefore given by

E = c · lim
T→∞

Λ(T )
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of λ.

C. System composition

Having defined the contracts for the component of the
system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {λcmd, F, ε}
O = {λ, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

∀t.ε(t) ≤ 0.25

In addition, the composite must satisfy all of the following
promises:

dλ

dt
= sgn(λcmd(t)− λ(t)) · 0.5

Fin = F · (0.2λ2 + 0.8λ)
λ(0) = 0
∀t, t′. t′ > t =⇒ wl(t′) = wl(t)+

+
1

π(D/2)2

∫ t′

t

(Fin(t′′)− Fout(t′′)− ε(t′′))dt′′

Fout = V · Sout =
√

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove λ from the set
of outputs. However, since λ is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
λ were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs
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and outputs (without hiding) is the following:

I = {F, ε}
O = {λ, λcmd, Fin, wl, wlm, Fout}

with the additional promises

∀t. 0.95 · wl(t) ≤ wlm(t) ≤ 1.05 · wl(t)
wlm ≤ wlmin =⇒ λcmd = 1
wlm ≥ wlmax =⇒ λcmd = 0

In addition to that, we can add the output E for the energy
consumption and the corresponding promise to compute the
energy consumption as a function of the position of the valve.
The total set of inputs and outputs is therefore:

I = {F, ε}
O = {λ, λcmd, Fin, wl, wlm, Fout, E}

D. Contract verification

Contract verification consists now in checking whether the
contract for the composition that we have derived in the
previous section refines the contract for the system, outlined in
Section V-A. Refinement, as discussed in Section III, amounts
to checking that the guarantees offered by the collection of
components are stronger than the guarantees required by the
overall specification (the implementation promises at least
the same, or more), under a weaker set of assumptions (the
implementation assumes the same from the environment, or
less). These conditions, in turn, can be verified by comparing
the set of solutions of the equations. Stronger guarantees
mean a smaller set of solutions for the promises (a more
constrained behavior), while weaker assumptions imply a
larger set. Formally, if we take A and G as the sets of solutions,
the contracts must satisfy the usual relation

A′ ⊆ A

G ⊆ G′

where C ′ = (A′, G′) is the system contract, while C = (A,G)
is the contract obtained by taking the composition of the
contracts for each component. This formulation, however, is
effective only when comparing contracts that have the same
set of inputs and outputs. This is not the case here, since the
overall system contract specification and the system composite
are defined on slightly different alphabets of signals. Hence,
the set of inputs and outputs must somehow be equalized.
One solution is to extend the system specification to include
the ports of the composition, such as λ, λcmd, Fin and wlm.
The promises of the system specification do not change, so
that in practice the system specification allows any value on
those ports. Alternatively, we may hide the extra outputs, and
keep only the relevant ones, i.e., wl, Fout and E.

The situation is different for the inputs. First, the composi-
tion depends on F rather than on P . Thus, we must add to
the composition a component PF that translates the value of
P into the corresponding value of F , by applying again the
Bernoulli law. That is, PF has P as an input and F as an

output. After the composition, the overall composite will have
P as an input (since it is an input of PF and it is not an
output of any other component), and F as an output (since it
is an output of PF and an input of the valve). Obviously, at
this point, the port F must be hidden, since it is not an output
in the system specification.

To equalize on ε, we may add it as an input to the system
specification. The equations do not change, so that the system
specification is effectively independent of the value of ε.

After equalization, we can check containment of the solution
sets. It is apparent that the condition on the assumptions is
not satisfied: in fact, A requires that ε be bounded, which is
a condition that is not specified by the system specification
A′. The problem can be solved by changing the way we
modeled the container. There, we made the assumption that
the evaporation rate is bounded. Thus, we had to take ε as an
input of the specification. A closer look, however, reveals that
the evaporation rate is a function of the shape of the container.
Hence, the rate of evaporation can actually be guaranteed by
the container itself. Thus, ε should actually be an output of
the container, and the assumption on boundedness is changed
into a guarantee.

Checking the guarantees is more complex, and requires
solving the system of equations that characterize the composite
and deriving the expression of wl, Fout and E explicitly. After
that, we need to check the containment relation. In our specific
case, we can solve the equation for the valve under some
hypothesis on the value of the command λcmd. However, the
equation for the water level requires a numerical solution. One
way to address this problem is to construct hybrid models of
the system, as described in our previous work [5]. Questions
of scalability do arise, and abstractions must be typically
employed to make the solution practical.

Note that we made no assumption on P in the implemen-
tation. Therefore, A admits more solutions than A′. We can
take advantage of this fact, and only check that

A′ ⊆ A

G ∪ ¬A ⊆ G′ ∪ ¬A′

since a promise is effective only if the corresponding assump-
tions are satisfied. Because ¬A is smaller than ¬A′, satisfying
the condition on the guarantees is easier, as the formulation
applies the assumptions for the system specification to the
implementation.

The model that we have developed still allows several
possible implementations. In particular, nothing is said about
the behavior of the controller when the water level is between
wlmin and wlmax. That is, the controller may arbitrarily
switch between open and close valve while in that range.
While all choices may actually be such that the guarantee on
Fout is satisfied, some choices may lead to a violation of the
guarantee of the energy consumption. This would be detected
during verification, if the tools used for refinement checking
are powerful enough to handle the continuous time speci-
fication. The ability to formalize and check non-functional
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requirements, under the assumptions, is a critical advantage
of a contract-based design methodology in which different
viewpoints can be mixed in the specification. Observe also
how the energy consumption depends on the actual behavior
of the implementation, so that the two viewpoints must be
integrated to obtain significant results.

Besides verification, controller synthesis can be applied
to derive automatically a controller that satisfies the system
contract. In this case, we take the composition of all the
components, except for the controller itself. The problem con-
sists of deriving a contract for the controller, such that when
the controller is composed with the rest of the system, the
composition satisfies the system specification. This problem
is subject of current research, and typically suffers from high
computational complexity, especially in the case of timed
systems. The synthesis problem has been addressed and solved
in certain circumstances through an operator of quotient [40],
[39].

E. Vertical Contracts in Control

Contracts are most naturally established between entities
or components that operate at the same level of abstraction.
By sharing a common understanding of the system, two
components rely on each other’s guarantees to fulfil the
system requirements, while assumptions formalize this inter-
dependence thereby enabling their separate and independent
implementation. Of potentially greater interest, however, is
the use of contracts across different levels of abstraction, as
described in Section IV-B. When used this way, a vertical
contract defines a relation between the properties of a system
and those of its implementation platform. In other words, the
system requirements can be satisfied by operating not only at
the level of the application, but also by configuring execution
parameters and by taking advantage of the expected behavior,
as described by the assumptions, of both the application
and the platform. Co-design and multi-layer techniques are
therefore fully supported by the contract models, and are
well incorporated and extended by the Platform-Based Design
paradigm discussed in the previous sections.

These aspects are of increasing importance in the context
of control design. Martin Törngren describes controllers as
“bound by contracts to the plant”, in the sense that the con-
troller parameters must refer to closed loop system dynamics,
which are in turn determined by the plant dynamics [44].
Likewise, timing constraints refer to both open and closed loop
systems, as the controller parameters depend on the chosen
sampling period and on the particular techniques (such as
delay compensation) used in designing the control loop. These
contracts, therefore, extend to the implementation platform.
Indeed, in control design there are three entities that interact
in different ways, as illustrated in Figure 5. The controller
implements the control law in a tight loop with the plant.
At the same time, the implementation platform executes the
controller and physically interfaces with the plant, defining the
critical non-functional parameters (delay, jitter and throughput)
that concur in establishing the system properties.

(A, G)

Platform

(A, G) (A, G) (A, G) (A, G)

Plant

Control algorithm

F1

F2F3

F4
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ECU ECUECU ECU U.S. AIR FORCE
602

AMC

40602

Figure 5. Typical interactions between controller, plant and implementation
platform

In this setting, we focus in particular on the interaction
between the controller and the platform. Here the controller
defines requirements in terms of several aspects that include
the timing behavior of the control tasks and of the communica-
tion between tasks, their jitter, the accuracy and resolution of
the computation, and more generally requirements on power
and resource consumption. These requirements are taken as as-
sumptions by the controller, which in turn provides guarantees
in terms of the amount of requested computation, activation
times and data dependencies.

Examples of this kind of interaction abound, and highlight
the need for a theory that can integrate vertical as well as hor-
izontal contracts. A typical application, shown in Figure 6 and
inspired by the cited presentation of Martin Törngren, is the
implementation of a vehicle stability control system, in which
three different controllers related to the yaw, the brakes and
the engine must interact together with the wheel, the engine
and the overall vehicle dynamics. Different implementation
platforms can be used to support the functionality, guaran-
teeing different quality levels. In this application, the control
systems depends upon several subsystems, each integrated on a
separate platform, and connected through often heterogeneous
communication fabric. Horizontal contracts at the level of the
platform can be used to understand the interactions between
the subsystems, and between the system and the plant with
respect to non-functional properties. Similarly, at the level of
the application horizontal contracts define the global properties
and the interaction between the control algorithm and the plant
with respect to the functional control specification. Vertical
contracts fit across these two levels as bridges that relate the
performance of the different implementation platforms to their
mapped applications.

The relations between contracts outlined in Section III
can be applied to vertical contracts, as well. The relation of
satisfaction is unchanged, since it involves the comparison
between an implementation and its contract. In the case of
an execution platform, this typically requires showing that
the guaranteed timing constraints are met under the load
conditions assumed by the contract. Compatibility is more
interesting. In the context of a platform, the “environment”
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Figure 6. Block diagram of a stability control application

in a vertical contract refers to the other possible applications
running on the same execution platform. Consequently, the
composition (mapping) of an application on its platform
defines the conditions (assumed and promised) under which
other tasks can be run without breaking the original contract.
Quantitative notions of robustness could be introduced [15]
to provide a measure of the possible violations, and therefore
instruct the designers or an automatic mapping tool on the
steps to be taken to optimize the architecture.

VI. MOVING FORWARD: THE IMPORTANCE OF CONTRACTS

We argued that contracts in their most elementary form may
just take the form of informal textual requirements, yet with
the key distinguishing feature of explicating the separation
of concerns: what must be guaranteed by the system itself,
and what are the constraints on environments, which are
fundamentally required so as to allow the system — based
on such assumptions — to enforce its guarantees. We have
then seen how this core paradigm matches well with the
orthogonal notion of viewpoints: contracts can thus be flagged
as to the viewpoint they relate to. Clearly, the number of
viewpoints to be supported may vary from application to
application — thus it is up to the customization of contract-
based design within a company’s development process, to
determine the set of viewpoints that must be supported. For
sure, this will go beyond capturing the functionality, with
safety viewpoints and real-time viewpoints being a necessity
in safety relevant embedded systems development. Business
related viewpoints such as the ones reflecting costs, constraints
from manufacturing, maintainability are natural choices, as are
those related to resource consumption.

Orthogonal to this discussion is the degree of formalization
used in contracts. As highlighted above, there is already high
methodological value when using informal contracts. A natural
next step is to restrict the vocabulary of contracts to (domain
specific) ontologies. Further steps towards formalization are
viewpoint dependent: they can, for example, take the form of
automata-based specifications, employ suitable logics, build
on a library of patterns, and capitalize on sequence charts.

The additional effort in providing a degree of formalization is
typically well invested due to the additional benefits we have
outlined above, such as testing consistency of requirements,
identifying complex integration errors early through virtual
integration testing, boosting re-use though component-based
design, and allowing cross-layer design optimizations based
on performing platform-based design. The key point we raise
is that this formalization can be done incrementally and on
a case-by-case basis. Thus, there is a clear migration strat-
egy from using contracts informally, to incorporating domain
ontologies, to gradually enriching the number of covered view-
points, and to gradually increase the degree of formalization.
No matter in which order such steps are taken, each of these
comes with significant potentials for process improvements.

It is the objective of this paper to let designers capitalize on
this so-far largely unexploited tool. The value proposition of
adding contracts to system companies development processes
is now on the table — the ultimate test rests in the market take
up. Strong indications of market acceptance are the anchoring
of the contract-based approach within the CESAR 22 Reference
Technology Platform (RTP), where 25 European global players
in the systems market team up with leading vendors, research
institutes, and SMEs, to create an innovation ecosystem around
the emerging standard meta-model of the CESAR RTP.
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