

ANALOG AND MIXED-SIGNAL MICROELECTRONICS

- 1. Angela A. Darie, PhD
- Ion Vornicu, PhD
- Rafaella B. Fiorelli Martegani, PhD
- Marco Trevisi
- 5. Belén Pérez Verdú, PhD
- 6. Jorge Fernández Berni, PhD
- Manuel Carrasco Robles, PhD

- 8. Ricardo Carmona Galán, PhD
- 9. Manuel Moreno García
- 10. Ángel Rodríguez Vázquez, PhD
- 11. Juan Antonio Leñero Bardallo, PhD
- 12. Manuel Delgado Restituto, PhD
- 13. Rocío del Río Fernández, PhD
- 14. Fernando Medeiro Hidalgo, PhD

Not in the photo: Óscar Guerra Vinuesa, PhD Rafael Domínguez Castro, PhD

ANALOG AND MIXED-SIGNAL MICROELECTRONICS

ANALOG AND MIXED-SIGNAL MICROELECTRONICS

Head: Ángel Rodríguez Vázquez

- 14 Doctors + 4 PhD Students
- 2 Full Professors (US)
- 1 Scientist Researcher (CSIC)
- 4 Associate Professors (US)
- 1 Tenured Scientist (CSIC)
- 6 PostDocs

Research Lines:

Design of AMS integrated circuits for sensing, signal conditioning and information processing in CMOS techs

- 1 Design of ADCs and Mixed-Signal Interfaces
- 2 Wireless Implantable and Wearable Intelligent Biosensor Devices
- ③ CMOS Smart Imagers and Vision Chips
- ④ Heterogeneous Sensory-Processing Systems and 3D Integration

European Training Network, H2020 (starting on October 1st)

ACHIEVE (AdvanCed Hardware/Software Components for Integrated/Embedded Vision SystEms)

#	Participant Legal Name	Country
1	AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS	Spain
2	Université Clermont Auvergne	France
3	Université Bourgogne Franche-Comté	France
4	UNIVERSITA DEGLI STUDI DI UDINE	İtaly
5	UNIVERSIDADE DE COIMBRA	Portugal
6	UNIVERSITEIT GENT	Belgium
7	Specialised Imaging Ltd	United Kingdom

Information on partner organisations

Partner Organisation number	PIC Search PIC	Organisation legal name	Country	Academic Sector	Role of Provide training	associated Host secondmends	
1	939957355	FLIR Systems Trading Belgium FSTB	Belgium	No	No	Yes	
2		Prefixa Inc.	United States	No	Yes	Yes	
3	919815305	Kovilta Oy	Finland	No	No	Yes	
4	968729010	Nvidia Ltd	France	No	No	Yes	

Evaluation Summary Report

Evaluation Result

Total score: 95.00% (Threshold: 70/100.00)

Role and Commitment	Ricardo Carmona-Galán (Coord. ETN), Tenured Scientist, 30%			
of key persons	Rocío del Río Fernández (Coord. MSc) Associate Professor, 15%			
(including supervisors)	Jorge Fernández-Berni, Associate Professor, 15%			
	Angel Rodríguez-Vázquez (Coord. PhD Prog) Full Professor, 10%			
	Belén Pérez-Verdú (Dean Faculty of Physics), Full Professor, 10%			

MASTER IN MICROELECTRONICS: DESIGN AND APPLICATIONS OF MICRO/NANOSCALE SYSTEMS

Título de Máster Universitario verificado por la ANECA y publicado su carácter oficial en el BOE Nº 236 de 29/09/2010. Inscrito en el Registro de Universidades, Centros y Títulos con el nº 4312169. Plan de Estudios aprobado por la Resolución de 20 de Julio de 2011 de la Universidad de Sevilla, publicado en el BOE Núm, 259 de 27 de octubre de 2011.

iversidad de Sevilla, publicado en el BOE Num. 259 de 27 de octubre de 2011

GENERAL

TEACHING MANAGEMENT

SACULTY

ADMISSION 🔤 SCHOLARSHIPS

QUALITY

ANNOUNCEMENTS

COURSES

- Micro- and Nano-Devices and Technologies
- Design of Analog, Digital, Mixed-Signal and RF (AMS/RF) Integrated Circuits
- Applications, Systems and Techniques for Information Processing
- Design Methodologies and CAD Tools
- Wireless Transceivers: Standards, Techniques and Architectures
- Circuit Design for RF Front-End
- Electromagnetic Fundamentals for RF Design
- Sensors in Integrated Technologies
- Bio-Inspired Processing: Algorithms and Circuits
- Neuromorphic and Fuzzy Systems: Applications and Case Studies
- Test and Design-for-Test
- Advanced Design Techniques
- Emerging Technologies
- Work Placement in Companies and/or Research Centers
- Master's Thesis

http://www.mastermicroelectronica.us.es/en/

NEWS

- PHASE 3 FOR PRE-REGISTRATION in the Master for the academic year 2017-18 will be opened FROM SEPTEMBER 28th TO OCTOBER 2nd. For more details, please check the info in the section "Admission".
- The ANNOUNCEMENTS page includes "Job offers, scholarships, etc.".

Jorge Fernández-Berni, PhD

jfernandez8@us.es

Concepts of Imaging and Vision Sensors

IMAGING Main objective: image quality

VISION Main objective: scene understanding

Vision chips based on focal plane processing

Power efficiency through architecture

- Distributed processing is more efficient than conventional serialized architectures
- Parallelizing computing resources:
 - meets otherwise intractable timing requirements (overcoming Amdahl's law) a)
 - b) reduces the power consumption overhead due to data conversion and transfer

Hierarchical vision processing architecture

Hierarchical vision processing architecture

Fully-parallel conversion with ramp ADC

Power efficiency through image representation

Power efficiency through image representation

Power efficiency through image representation

- **Feature extraction:** reduction of the dimensionality of visual information by obtaining the most relevant and characteristic points or clusters of points
- **Compressed sensing:** efficient sampling technique that makes use of the sparsity of the signal in some domain

the efficient representation of the scene is conveyed one step further towards the sensors

• **Applications:** adaptive image data transmission, high-speed sensing, feature extraction at image sensing, simplification of processing resources at the sensor node

Depth Sensing

Depth Sensing

© Softkinetics

Single-photon avalanche photodiodes

- 1) A photodiode biased beyond breakdown stays at zero current until avalanche is initiated
- 2) Avalanche can be triggered by one single photon absorption event, DC or AP
- 3) Quenching circuit (active or passive) limits the avalanche current by keeping $|V_0-V_A| < V_{BD}$

- Avalanche must be quenched to avoid device destruction
- The simplest scheme is passive quenching
- Active quenching and recharge can be employed to decrease dead time

3D Imager with In-Pixel TDC (145ps-ToF)

[Vornicu et al., ISCAS'16]

Best Paper Award of the Sensory Systems **Technical Committee**

Performances	[Chuang 2004]	[Gupta 2011]	[Han 2005]	[Vornicu 2016]
Technology	TSMC 0.18μm	TSMC 0.18µm	0.35µm	UMC 0.18µm
Voltage supply	1.8V	3.3V	3.3V	1.8V
Delay cell	Pseudo- differential	Single ended	Differential	Pseudo- differential
Nr. of cells	2	3	4	4
Frequency range	440-1595 MHz (72%)	16MHz- 367MHz (95.6%)	1.07 and 2.06 GHz	400-850MHz, (53%)
Nr. of phases	4	3	8	8
K _{vco}	Non-linear	153MHz/V	561MHz/V	477MHz/V
Linearity	87.3%	68.6%	-	99.4%
Phase noise [dBc/Hz]	-93 @1MHz	-88 @100KHz	-99 @2MHz	-102 @2MHz
Area/A _{vcro}	3.11	1.53	-	1
Avg. power	26mW	35.5mW	14.6mW	1.17mW