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Cyber-Physical Systems

Most of you should know what I am talking about...

If you don’t, take a look at Francesca’s and Michael’s great talks!
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Requirement(s)
“Singular documented physical and functional need that a particular
design, product, or process must be able to perform”

[Wikipedia - Requirement]

Functional requirements (a.k.a. capabilities)
Set of inputs + behavior + outputs
What a system is supposed to accomplish

Non-functional requirements (a.k.a. quality of service)
reliability, maintainability, ...
testability
energy efficiency
...
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CPS = Robot (for this tutorial only!)
Research on cooperative
human-robot interaction

Robots must be made adaptable
and safe

Focus is on

I checking requirements of
control software

I learning to interact with the
environment

I using formal models and
techniques

iCub - the infant robot
from IIT Genoa

To what extent the requirements of (the control software in)
adaptive CPSs can be analyzed automatically?
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Requirements Analysis: Why?
The First Law of Robotics
[Asimov, 1940]
“A robot may not injure a human
being, or, through inaction, allow a
human being to come to harm.”

“...before we release autonomous
agents into real-world environ-
ments, we need some credible and
computationally tractable means of
making them obey Asimov’s First
Law.”

“Given a complex world where
the agent does not have com-
plete information, any attempt
to formalize the second half of
Asimov’s First Law is fraught with
difficulties.”
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Requirements Analysis: What?

Reliability: ability to perform required functions under stated
conditions for a specified period of time

Availability: proportion of time a system is in a functioning
condition

Maintainability: probability that a system will be retained in or
restored to a specified condition within a given period of time

Safety: ability to control recognized hazards to achieve accept-
able level of risk

Security: degree of resistance to, or protection from system
damage
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What about “off-the-shelf” engineering?

Safety is widely recognized as a design objective in complex systems

Methodologies Standards Guidelines
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Adaptive robots are not, e.g., planes...

vs.
ED 209 shows a reliability de-
fect, leading to potential safety
defects

Planes are dependable, but we
do not expect them to operate
autonomously (if they did, they
would be UAVs)
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... still, they need to be certified

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE 
REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME 
STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH 
THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

©   International Organization for Standardization, 2011

DRAFT INTERNATIONAL STANDARD ISO/DIS 13482 

ISO/TC 184/SC 2 Secretariat: SIS

Voting begins on Voting terminates on 
2011-09-08 2012-02-08

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION      МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ      ORGANISATION INTERNATIONALE DE NORMALISATION

Robots and robotic devices — Safety requirements for non-
industrial robots — Non-medical personal care robot 

Robots et composants robotiques — Exigences de sécurité — Robots non médicaux pour les soins 
personnels 

ICS  25.040.30 

ISO/CEN PARALLEL PROCESSING 

This draft has been developed within the International Organization for Standardization (ISO), and 
processed under the ISO-lead mode of collaboration as defined in the Vienna Agreement. 

This draft is hereby submitted to the ISO member bodies and to the CEN member bodies for a parallel 
five-month enquiry. 

Should this draft be accepted, a final draft, established on the basis of comments received, will be 
submitted to a parallel two-month approval vote in ISO and formal vote in CEN.

To expedite distribution, this document is circulated as received from the committee 
secretariat. ISO Central Secretariat work of editing and text composition will be undertaken at 
publication stage. 

Pour accélérer la distribution, le présent document est distribué tel qu'il est parvenu du 
secrétariat du comité. Le travail de rédaction et de composition de texte sera effectué au
Secrétariat central de l'ISO au stade de publication.

Licensed to Fondazione Istituto Italiano di Tecnologia / Mr. Menini
ISO Store order #: 10-1314145/Downloaded: 2013-01-29
Single user licence only, copying and networking prohibited

ISO 13482:2014

Safety requirements for
Non-industrial robots

Non-medical personal
care robots

Makes provision for safe
autonomous actions

Autonomy = adaptivity:
autonomous evaluative
decisions taken by the
robot that might use
cognitive models not
built in at factory.
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Requirements Analysis: How?

Intrinsic safety: it is not possible to model an unsafe agent
(Unlikely)

Safety by construction: the agent will be safe as long as specific
design guidelines are strictly observed
(Staple method in engineering)

Demonstrable safety: it can be proved that the agent design reduces
undesirable events to an acceptable level
(This tutorial!)

Monitorable safety: it can be ensured that the agent recognizes actions
leading to undesirable events
(Hardly disposable, will touch upon it)
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Agenda

1 Stateless models
Safety of multilayer perceptrons (MLPs)
The PUMA manipulator case study
Counterexample-based verification and repair

2 Hybrid modal models
Safety in (adaptive) hybrid systems
The Air-Hockey setup
Modeling and experimental results

3 Probabilistic modal models
Safety in sequential decision making (with uncertainty)
Bioloid’s standing-up task
Learning, verification and repair
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Our contribution

Given a (specific kind of) neural network ν and a (safety) specification s

Network
Abstraction

1 Find an abstraction α

2 If ν |=α s then STOP: ν is safe

3 Otherwise, refine α and go back to step (2)

Challenge: Find/refine α

Network
Repair

1 Given an abstraction α

2 If ν |=α s then STOP: ν is safe

3 Otherwise, modify ν and go back to step (2)

Challenge: Modify ν automatically
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Single hidden-layer MLP

x1

x2

x3

x4

y

a11

a12

b1

b2

d

c1

c2

input layer hidden layer output layer

σ(r1)

σ(r2)

a21

a22

a31
a32

a41

a42

Input to the j-th hidden neuron (n inputs): rj =
∑n

i=1 ajixi + bj

Hidden neurons driven by logistic function: σ(r) = 1
1+exp(−r)

Output (m hidden neurons): y =
∑m

j=1 cjσ(rj) + d
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Universal approximation theorem
Single hidden-layer MLPs featuring “smooth” hidden-neuron functions
can in principle approximate any function f : Rn → R.
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MLPs are (straight line) programs

const int n = ... // input signals
const int m = ... // hidden nodes (single layer)

const real a[n][m] = { ... }; // weights for input connections
const real b[m] = { ... }; // weights for bias node
const real c[m] = { ... }; // weights for output connections
const real d = ... ;

real network(real x[n]) {
i = 1; j = 1; y = 0;
while (j <= m) {

real r = 0;
while (i <= n) {

r = r + a[i][j] * x[i] + b[j];
++i;
}
y = y + c[j] * (1 / (1 + exp(-r)));
++j;

}
y = y + d;
return y;

}
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The task of MLP synthesis

x1

y
x2

x3

x4

x1 x2 x3 xk

y1 y2 y3 yk
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The task of MLP synthesis

x1

y
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σ(r2)

1

x2

x3

x4

x1 x2 x3 xk

y1 y2 y3 yk
ν(x)
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How good is your MLP?
y

y1 y2 y3 yk

f(x)

ν(x)

Easy to know on the dataset, e.g.,

ε̂ =

√√√√1
k

k∑
i=1

(yi − ν(x i))
2 RMSE

How good is ν in generalizing to f , e.g.,
ε = ||f (x)− ν(x)||? ⇒ f is unknown!

Leave-one-out estimation of generalization error

1 Given input patterns X and labels Y , we synthesize the MLP ν(i) considering
X(i) = {x1, . . . , xi−1, xi+1, . . . xk} and corresponding Y(i).

2 Repeat (2) for k times, to obtain k different MLPs.
3 Compute RMSE as follows

ε̂ =

√√√√1
k

k∑
i=1

(yi − ν(i)(x i))
2
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Safety for MLPs: a proposal

Network ν as a function ν : I → O where
I = D1 × . . .× Dn is the input domain and each Di = [ai ,bi ] is a
closed interval with ai ,bi ∈ R and ai ≤ bi .

O is the output domain, a closed interval in R.

Define safety thresholds l ,h ∈ O with l < h.

Require output of ν to range within [l ,h] for all acceptable inputs.

A network ν : I → O is safe when it satisfies the property

∀x ∈ I : ν(x) ∈ [l ,h] with l ,h ∈ O
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Safety vs. accuracy

Training and validation methods assume i.i.d. samples
In practice, we do not know whether this is the case
⇒ we may loose even statistical guarantees
MLPs are fairly robust w.r.t. failure of i.i.d. assumption
⇒ we still need to avoid misbehaviors

y

y1 y2 y3 yk

ν(x)

Upper safety
threshold

Safe but not accurate

y

y1 y2 y3 yk

ν(x)

Upper safety
threshold

Accurate but not safe

y

y1 y2 y3 yk

ν(x)

Upper safety
threshold

Accurate and safe

Estimated accuracy and safety do not imply each other!
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Outline

1 Stateless models
Safety of multilayer perceptrons (MLPs)
The PUMA manipulator case study
Counterexample-based verification and repair

2 Hybrid modal models
Safety in (adaptive) hybrid systems
The Air-Hockey setup
Modeling and experimental results

3 Probabilistic modal models
Safety in sequential decision making (with uncertainty)
Bioloid’s standing-up task
Learning, verification and repair
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Learning forward kynematics of a PUMA 500

PUMA 500
Industrial 6 DoF

manipulator

Task
Learn to control the end-effector position along a
straight line using the motor angles as input.

Dataset (141 patterns)
I input vectors x = 〈θ1, . . . , θ6〉 encoding 6

joint angles (in radians)
I output labels y corresponding to end-effector

coordinates (in meters)

Safe range for y is [−0.35, 0.35]

Synthesis summary
I training: 0.64s; error: ε̂ = 0.024m (RMSE)
I error distribution: ranges from 3.2×10−5m

(min) to 0.123m (max), median value of
0.020m.
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How to check safety?

Testing exhaustively all the input vectors? Untenable!

Sampling input vectors? Only probabilistic guarantees.
From a formal methods standpoint:

I Neural networks are combination of real-valued non-linear and
trascendental functions⇒ undecidable theories!

I Rational approximations of real numbers? ⇒ still too cumbersome!

An approach based on abstract interpretation
A concrete network ν is a function ν : Rn → R
Sound abstractions can be obtained via interval arithmetics
Abstract networks are functions ν̃ : [R]n → [R] encoded as
Boolean combinations of linear constraints

⇒ Key point: abstracting hidden layer neurons!
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Abstracting hidden-layer neurons

Logistic function σ : R→ (0,1)

Abstract logistic function σ̃p : [R]→ [[0,1]] (p ∈ R+)

Height of “staircase steps”⇒ maximum slope of tangent to σ (p/4)
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Abstraction/Refinement loop

Dataset

Neural
Network
Inducer

Neural
Network
ApplierMLP

HySATAbstraction
Abstract

MLP

UNSAFE

NO!
Abstract
Counterexample

YES!
Counterexample
is feasible

SAFE

Safety
thresholds
exceeded?

Counterexample
is spurious

Trigger
abstraction refinement

OK?

YES!

NO!

Abstraction is refined by using smaller and smaller values of p
Counterexample Triggered Abstraction Refinement (CETAR)
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Results on the PUMA case study

l h RESULT # CETAR TIME (S)
TOTAL HYSAT

-0.350 0.350 UNSAFE 8 1.95 1.01
-0.450 0.450 UNSAFE 9 3.15 2.10
-0.550 0.550 UNSAFE 12 6.87 5.66
-0.575 0.575 SAFE 11 6.16 4.99
-0.600 0.600 SAFE 1 0.79 0.12
-0.650 0.650 SAFE 1 0.80 0.13

“l” and “h”lower and upper safety thresholds, resp.
“# CETAR” indicates number of abstraction-refinement loops.
“TIME” is total CPU time and the time spent by HYSAT.
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Why repair?

The bounds in which we guarantee safety are not satisfactory:
64% larger than the desired ones.
Can we do better?

Observation: spurious counterexamples are weak points in the
abstract network, close-to-weak points in the concrete one.
Idea: repair the network by adding spurious counterexamples to
the dataset and retraining.

Main points
In practice, we do not have access to the true response
corresponding to spurious counterexamples inputs.
We use the concrete network response as an approximation.
In our experiments, overfit is not an issue.
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Abstraction/Refinement and Repair

Dataset

Neural
Network
Inducer

Neural
Network
ApplierANN

HySATAbstraction
Abstract

ANN

UNSAFE

NO!
Abstract
Counterexample

YES!
Counterexample
is feasible

SAFE

Safety
thresholds
exceeded?

Counterexample
is spurious

Trigger
abstraction refinement

Repair

OK?

YES!

Trigger repair

Add spurious
counterexample
to Dataset

NO!
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Results adding repair on the PUMA dataset

l h RESULT # CETAR TIME (S)
TOTAL MLP HYSAT

-0.350 0.350 UNSAFE 11 9.50 7.31 1.65
-0.400 0.400 UNSAFE 7 6.74 4.68 1.81
-0.425 0.425 UNSAFE 13 24.93 8.74 1.52
-0.450 0.450 SAFE 3 3.11 1.92 1.10

“l” and “h”lower and upper safety thresholds, resp.
“# CETAR” indicates number of abstraction-refinement loops.
“TIME” is total CPU time including time spent to retrain the
network (MLP), and to invoke HYSAT.
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Why repair works?

Start from tightest SAFE interval [−0.575,0.575]

Use true responses on spurious inputs⇒ Manual repair

First spurious cex (left) enables us to close at [−0.4,0.4].

Second spurious cex (right) enables us to reach [−0.355,0.355]!

Random input vectors (control)⇒ no consistent improvements.
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Why not using the most precise abstraction up front?
Consider the range [−0.65,0.65]
Baseline: p = 0.5, network declared SAFE in 0.13s
10× decrease in p (more and more precise abstractions)

At least 100× increase in CPU time (and growing)
Size of the encoding grows proportionately
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Will a retrained MLP maintains safety?
Only if MLP is retrained adding “right” patterns

Spurious counterexamples⇒ improvement!
Randomly generated input patterns⇒ mixed results

# l h
1 -0.46 0.46
2 -0.51 0.51
3 -0.50 0.50
4 -0.46 0.46
5 -0.48 0.48
6 -0.54 0.54
7 -0.55 0.55
8 -0.53 0.53
9 -0.59 0.59
10 -0.54 0.54
Manual repair - 1st round

(was [-0.575, 0.575])

# l h
1 -0.43 0.43
2 -0.55 0.55
3 -0.46 0.46
4 -0.40 0.40
5 -0.39 0.39
6 -0.39 0.39
7 -0.40 0.40
8 -0.48 0.48
9 -0.51 0.51
10 -0.44 0.44
Manual repair - 2nd round

(was [-0.4, 0.4])

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 37 / 82



Further extensions

Are we limited to checking

∀x ∈ I : ν(x) ∈ [l ,h] with l ,h ∈ O?

Are we limited to (single-layer) MLPs?
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More interesting (and challenging) properties

MLP ν : I → O trained on a dataset R of t patterns

Local safety
Given an input pattern x∗ 6= x for all (x , y) ∈ R is it the case that ν(x∗)
is “close” to y

j
as long as x∗ is “close” to x j and (x j , y j

) ∈ R for some
j ∈ {1, . . . , t}?

Sensitivity
Given thresholds δ, ε ∈ R+ is it the case that

∀x1, x2 ∈ I : ||x1 − x2|| ≤ δ → ||ν(x1)− ν(x2)|| ≤ ε?
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Are these questions interesting for ML people?

Yes! (Somewhat
surprisingly...)

Deep networks can have
large output deviations
given limited input noise

Noise is physically
realizable and does not
disturb humans!
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Different learning machines

⇒
From domain ... infer automatically ... ... models as
interaction... (learn) kernel machines.

Kernel machines are funny beasts!

Statistical guarantees only (at best)

R→ R functions⇒ no (easy) verification algos
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Different learning machines (cont.d)

⇒
From concrete ... extract ... ... conservative

machines... (automatically) abstractions.

Abstractions can be model checked!

Quantifier-Free Linear Arithmetic over R
Concrete machine is safe if abstract one is safe
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Critiques and recent related works

CETAR approach of Pulina-Tacchella [CAV 2010]
Pros: widely applicable, sound, effective (repair)

Cons: hardly scalable to “monster” networks

Recent attempts

X. Huang, M. Kwiatkowska, S. Wang, M. Wu - Safety Verification of
Deep Neural Networks - Invited paper at CAV 2017

G. Katz, C. Barrett, D. Dill, K. Julian, M. Kochederfer - Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks - CAV 2017

R. Ehlers - Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks - Published on arXiv
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Outline

1 Stateless models
Safety of multilayer perceptrons (MLPs)
The PUMA manipulator case study
Counterexample-based verification and repair

2 Hybrid modal models
Safety in (adaptive) hybrid systems
The Air-Hockey setup
Modeling and experimental results

3 Probabilistic modal models
Safety in sequential decision making (with uncertainty)
Bioloid’s standing-up task
Learning, verification and repair
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Motivation

Multiagent
Systems

Adaptive
Systems

Modern Robotic Control Systems

Safety Effectiveness

Complexity
Non-stationarity

Diversity
Size

Maintain Achieve

Safety-Efficiency tradeoff
Inaction is trivially safe, whereas efficient action can be unsafe.
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A case for Air Hockey

Fast: rapid perception,
thinking and movements.

Demanding: movement
must be accurate.
Complex: time delays,
board placement and
conditions.
Potentially unsafe: fast
moving industrial
manipulator!
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Air Hockey setup: Motion control

table
border

”waist”
joint
(origin)

ρ
θ

move
forward

move
backward

turn
right

turn
left

”home”
position

Polar coordinates on a plane with
origin in the PUMA “waist” joint.
Motion control based on primitives

move forward (increase ρ),
backward (decrease ρ)

turn right (increase θ), left
(decrease θ)

home reset to ρ = ρh, θ = 0
Given (ρ, θ) combine primitives to
reach target position.
Always execute “turn” first.
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Air Hockey setup: Learning and adaptation

Predict (ρ, θ) in order to intercept puck (defense play)

Working hypotheses:
I No previous knowledge of table size and placement
I No modeling of puck motion

Linear model for prediction

ρee = p1 + p2ρ1 + p3θ1 + p4ρ2 + p5θ2
θee = p6 + p7ρ1 + p8θ1 + p9ρ2 + p10θ2

where
I (ρee, θee) are end-effector coordinates
I (ρ1, θ1) and (ρ2, θ2) are two different puck positions, and
I p = {p1,p2, . . . ,p10} is learned using LMS optimization.

Adaptation: accumulate new samples and recompute p.
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Modeling: Hybrid automata distilled

Hybrid
Automaton

= Discrete
Control Modes

+ Continuos
Dynamics

Example: a simple straight-then-turn strategy to reach a reference
position in polar coordinates (ρc , θc)

Three control modes with linear dynamics

ρ̇ = vρ θ̇ = vθ

ρ̇ = 0

θ̇ = 0

¬move

move

ρ = cρ

θ = cθ

cρ, vρ
cθ, vθ

1 Stand still (ρ̇ = θ̇ = 0)

2 Change ρ at constant velocity vρ

3 Change θ at constant velocity vθ

Transitions on boolean events (e.g., move) or when reaching
boundary conditions (e.g., ρ = cρ).
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Modeling: dealing with multiple adaptive agents

Multiple
agents

Model each agent as a hybrid automaton

Use global variables to handle communications
between agents (a shared memory model)

Check asynchronous composition of the automata

Adaptive
agents

Adaptation can change structure and parameters

We keep structure fixed, only parameters change

A “scheleton” automata encodes structure

Once parameters are available, we have a complete
automaton that we can check for safety.
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Modeling: overview

Parametrized
Hybrid

Automata

HySAT

Adaptive control
system

Parameters

Safe?

disc position
(from vision)

end effector
coordinates

(to manipulator)

Update
control system

YES

Wait for improved
parameters

NO

ONLINE

OFFLINE

safety

condition

ρmin ≤ ρ ≤ ρmax
θmin ≤ θ ≤ θmax
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Experimental results: setup

Robot plays games against ten different human players.

Three different settings of the coordination module
Off-line parameters are learned off-line using 50 straight and

100 single-bounce shots; no safety check.
On-line parameters p are learned on-line; bootstrap

parameters p0 correspond to a hand-made setting
checked for safety.

Safe on-line each time a new set of parameters is learned, it is
checked for safety and, if safe, it is plugged in.

On-line settings keep learning across different players, so the
more games are played, the more effective the robot becomes.
New parameters are considered safe if HYSAT cannot find a
safety violation within 30 CPU seconds.

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 54 / 82



Experimental results: setup

Robot plays games against ten different human players.
Three different settings of the coordination module

Off-line parameters are learned off-line using 50 straight and
100 single-bounce shots; no safety check.

On-line parameters p are learned on-line; bootstrap
parameters p0 correspond to a hand-made setting
checked for safety.

Safe on-line each time a new set of parameters is learned, it is
checked for safety and, if safe, it is plugged in.

On-line settings keep learning across different players, so the
more games are played, the more effective the robot becomes.
New parameters are considered safe if HYSAT cannot find a
safety violation within 30 CPU seconds.

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 54 / 82



Experimental results: setup

Robot plays games against ten different human players.
Three different settings of the coordination module

Off-line parameters are learned off-line using 50 straight and
100 single-bounce shots; no safety check.

On-line parameters p are learned on-line; bootstrap
parameters p0 correspond to a hand-made setting
checked for safety.

Safe on-line each time a new set of parameters is learned, it is
checked for safety and, if safe, it is plugged in.

On-line settings keep learning across different players, so the
more games are played, the more effective the robot becomes.
New parameters are considered safe if HYSAT cannot find a
safety violation within 30 CPU seconds.

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 54 / 82



Experimental results: setup

Robot plays games against ten different human players.
Three different settings of the coordination module

Off-line parameters are learned off-line using 50 straight and
100 single-bounce shots; no safety check.

On-line parameters p are learned on-line; bootstrap
parameters p0 correspond to a hand-made setting
checked for safety.

Safe on-line each time a new set of parameters is learned, it is
checked for safety and, if safe, it is plugged in.

On-line settings keep learning across different players, so the
more games are played, the more effective the robot becomes.
New parameters are considered safe if HYSAT cannot find a
safety violation within 30 CPU seconds.

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 54 / 82



Experimental results: setup

Robot plays games against ten different human players.
Three different settings of the coordination module

Off-line parameters are learned off-line using 50 straight and
100 single-bounce shots; no safety check.

On-line parameters p are learned on-line; bootstrap
parameters p0 correspond to a hand-made setting
checked for safety.

Safe on-line each time a new set of parameters is learned, it is
checked for safety and, if safe, it is plugged in.

On-line settings keep learning across different players, so the
more games are played, the more effective the robot becomes.
New parameters are considered safe if HYSAT cannot find a
safety violation within 30 CPU seconds.

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 54 / 82



Experimental results: looking for unsafe states

PLAYER OFF-LINE ON-LINE

SHOTS UNSAFE SHOTS UNSAFE

# 1 59 – 55 1
# 2 56 2 72 3
# 3 46 1 39 –
# 4 61 – 46 –
# 5 58 – 80 –
# 6 48 – 69 –
# 7 84 6 76 1
# 8 44 2 84 –
# 9 103 – 112 –
# 10 99 8 86 –
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Experimental results: effectiveness?

Does checking for safety hinder effectiveness?

Extract input coordinates and reference target positions from
off-line training set
Compute RMSE between

I Reference target positions, and
I output of adaptive system using linear regression

Compare the evolution of on-line and safe on-line settings.
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Experimental results: On-line vs. safe on-line learning
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Summing up...

Modelling multiagent adaptive control systems using
parametrized hybrid automata.

Combining offline checking and online learning to maintain safety
without compromising effectiveness.

Showcasing formal methods in robotics using a real and
challenging task.

Acknowledgements
EU Information and Communication Technologies 7th Framework
Programme [FP7/2007-2013] grant N. 215805, the “CHRIS” project

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 58 / 82



Critiques and recent related works

MC of hybrid-adaptive models
Metta-Natale-Pathak-Pulina-Tacchella [ICRA 2010]

Pros: widely applicable, sound, effective

Cons: no repair, cannot handle non-linear models, hardly scalable
to multi-robot setups

Recent attempts
Too many to cite them in a slide!

Data driven verification and synthesis

Formal synthesis of controllers

AI-Planning for hybrid systems: build, execute, repair, monitor
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Outline

1 Stateless models
Safety of multilayer perceptrons (MLPs)
The PUMA manipulator case study
Counterexample-based verification and repair

2 Hybrid modal models
Safety in (adaptive) hybrid systems
The Air-Hockey setup
Modeling and experimental results

3 Probabilistic modal models
Safety in sequential decision making (with uncertainty)
Bioloid’s standing-up task
Learning, verification and repair
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How it works

Observe s0

⇒
Perform a0

⇒
Receive r1

Observe s1

⇒
Perform a1

⇒
Receive r2

Observe s2

⇒
Perform a2

⇒
Receive r3
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Reinforcement Learning (RL)
Set of states S, set of actions A

Agent can sense current
state st ∈ S

Agent peforms action at ∈ A
in state st

Environment “moves” to state
st+1

Agent receives reward
rt+1 = ρ(st ,at)

Fact
δ and ρ are not known (but assumed to be stationary)

Goal
Learn policy π : S → A
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Safety in RL

Safety can be defined in negative terms. An agent’s behavior is
unsafe, if it leads to:

Fatal states, e.g., injury to environment or robot, unrecoverable
posture
Undesirable states, e.g., singular posture requiring reset of
manipulator
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Exploitation vs. Exploration

Safety while learning
Steep challenge!
RL acquires knowledge by
trial-and-error!

Safety after learning
1 Learn safely (e.g.,

simulator)
2 Verify that policy π is safe
3 Possibly fix π
4 Deploy and monitor
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Mathematical model

Environment is a Markovian Decision Process (MDP)
S: Set of all possible states the system could be in

A: Set of all possible actions

ρ : S × A→ R: Rewards or utility of state(-action)

δ : S × A→ S: Transition function such that
P(st+1|at , st , st−1, . . . s0) = P(st+1|at , st)

Agents provides stochastic policy (maximizing returns)
For all states s ∈ S and actions a ∈ A, π(s,a) is the probability of
taking action a in state s.
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Environment + Policy = (Discrete Time) Markov Chain

DTMC
Given a set of propositions AP, a DTMC is a tuple (W ,w ,P,L) where

W is a finite set of states
w ∈W is the initial state;
P : W ×W → [0,1] is the transition probability matrix
L : W → 2AP is the labeling function.
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Safety of agent = Reachability of “bad” states

Key element 1: Probabilistic Temporal Logic (PCTL)
A logic language to express probability of behaviors in DTMCs

M,w0 |= P<σ[F bad ]

a.k.a. “Given DTMCM, is the probability of reaching some state
labelled bad from state w0 less than σ?”

Key element 2: Probabilistic Model Checking
Algorithms that can decide queries in PCTL
Tools (e.g., COMICS, PRISM, MRMC) that implement such
algorithms
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Outline

1 Stateless models
Safety of multilayer perceptrons (MLPs)
The PUMA manipulator case study
Counterexample-based verification and repair

2 Hybrid modal models
Safety in (adaptive) hybrid systems
The Air-Hockey setup
Modeling and experimental results

3 Probabilistic modal models
Safety in sequential decision making (with uncertainty)
Bioloid’s standing-up task
Learning, verification and repair
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Context and motivation

Bipedal locomotion is a challenging task for a humanoid robot

Reliable standing-up routines are fundamental in case of a fall

Conventional motion-planning is difficult to apply

Scripted strategies are often used:
I lack flexibility (by definition)
I reliability and robustness issues
I daunting task

Learning offers an elegant solution
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Objectives

Problem: Synthesize a standing-up procedure that minimizes
the expected number of falls, self-collisions and actions.

?

Simulated Bioloid humanoid in V-REP
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Reinforcement learning

Goal: Learn an optimal strategy for a non-deterministic
probabilistic system
Given:

I state set S, initial state sinit

I action set Act
I a possibility to observe the successor state when executing a given

action in a given state
I a reward function R : S × Act × S → R

Method: Q-learning

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 71 / 82



Reinforcement learning

Goal: Learn an optimal strategy for a non-deterministic
probabilistic system

Given:
I state set S, initial state sinit

I action set Act
I a possibility to observe the successor state when executing a given

action in a given state
I a reward function R : S × Act × S → R

Method: Q-learning

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 71 / 82



Reinforcement learning

Goal: Learn an optimal strategy for a non-deterministic
probabilistic system
Given:

I state set S, initial state sinit

I action set Act
I a possibility to observe the successor state when executing a given

action in a given state
I a reward function R : S × Act × S → R

Method: Q-learning

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 71 / 82



Reinforcement learning

Goal: Learn an optimal strategy for a non-deterministic
probabilistic system
Given:

I state set S, initial state sinit

I action set Act
I a possibility to observe the successor state when executing a given

action in a given state
I a reward function R : S × Act × S → R

Method: Q-learning

Armando Tacchella (UNIGE) Requirements Analysis in CPS Porto Conte, Sept. 25-30 71 / 82



Q-learning: Learning through simulation
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Q-learning on an example

s0

s1

a1

Rewards:
R s0 s1 s2 . . .

(s0,a0) -10 100 -50
(s0,a1) -10 100 -50
. . .

(s1,a0) -50 -10 100
(s1,a1) -50 -10 100
. . .

R s0 s1 s2 . . .

(s0,a0) -10 100 -50
(s0,a1) -10 100 -50
. . .

(s1,a0) -50 -10 100
(s1,a1) -50 -10 100
. . .

Q-matrix:
Q a0 a1 a2 . . .

s0 0 0 0
s1 0 0 0
s2 0 0 0
. . .

Q a0 a1 a2 . . .

s0 0 0 0
s1 0 0 0
s2 0 0 0
. . .

Q a0 a1 a2 . . .

s0 0 50 0
s1 0 0 0
s2 0 0 0
. . .

Qk+1(s0, a1)= 0.5 ·Qk (s0, a1)+
0.5 · (100 + 1 ·maxai∈ActQk (s1, ai))
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Outline

1 Stateless models
Safety of multilayer perceptrons (MLPs)
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Q-learning: The action space

The robot has 18 joints→ intractable action space

Simplifying assumptions:
some joints are inhibited
joints operate symmetrically
action space is discretized

We end up with 730 actions:
3 upper limbs, 3 lower limbs, 3 actions each
→ action space {−1,0,1}6

additional action arestart for safe restart
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Q-learning: The state space

Robot states: s = (x , y , z,q0,q1,q2,q3, ρ1, . . . , ρ18) ∈ R25

Infinite state space!
Full grid discretization is infeasible

Input: scripted trace A =
(
aA

0 , . . . ,a
A
k
)

for standing-up
Explore states in a “tube” around A

sinit
aA

0
a∈Act sinit

aA
0 aA

1
a∈Act sinit

aA
0 aA

1 aA
2

a∈Act . . .

Discretize the so reachable states→ 17614 states
Still, several adaptation of Q-learning were needed to achieve
convergence
Several additional paths to the goal could be identified (even
shorter)
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Static and runtime methods: Our framework
Wait but... how to guarantee that our properties of interest are
satisfied?

State space generation

Q-learning

Model generation

Greedy model repair

Runtime monitoring

stable strategy σ

stable strategy σ

safe stable strategy σ

new observations M,

current strategy σ

That’s why we combine it with static analysis and runtime monitoring
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Model repair: Idea
How can we adapt schedulers to satisfy certain safety requirements?

Collect statistical information during Q-learning
Compute a Markov decision process (MDP) model of the robot
Abstract scheduler→ parametric DTMC
Instantiate parametric DTMC model by the scheduler from
Q-learning
Check safety by probabilistic model checking
Repair the scheduler if unsafe
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Reach.prob. in simulation 0 0.003 0.046
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Reach.prob. in model before repair 0.001 0.005 0.048
Reach.prob. in simulation before repair 0 0.003 0.046

Reach.prob. in model after repair 0.0003 6.8 · 10−6 0.02
Reach.prob. in simulation after repair 0 0 0
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Runtime monitoring

So now we deploy our safe, repaired strategy on the real robot and
everything should be fine right?

WRONG

What if the assumptions on which the model was built change?
; environmental changes, robot failures . . .

Looks like this is a problem we could solve using. . .

runtime monitoring
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Runtime monitoring

We collect statistical observations during deployment
From time to time, we update the MDP model with the new
observations
Model check and repair the scheduler if needed

We simulated that a part of the robot was broken
Out of 300 simulation episodes only 2 reached the goal state
After a feedback loop, in further 300 episodes, 197 reached the
goal
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Critiques and related works

Probabilistic model-checking and repair approach
of Leofante-Vuotto-Abraham-Tacchella-Jansen [ISOLA 2016]

Pros: manageable state and action space representations for
complex systems, smooth application of formal methods

Cons: time-consuming simulation

Other attempts
Probabilistic model checking of emergent behaviors in robot
swarms (C. Dixon et al.)
Integration between learning and verification (N. Jansen et al.)
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Thank you for your attention!

Questions or comments?
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