High Level Synthesis
A Dataflow Approach

J. Sérot
Institut Pascal
U. Clermont Auvergne /| CNRS
Clermont-Ferrand, France

CPS Summer School

2017/09/26-29, Alghero, Sardinia

Context

e Most of embedded applications —

including CPS ! — are implemented | \?j‘\. “
using both software and hardware o ; v

e current trend in CPU technology is
many cores + FPGA fabric

e Hardware implementation is
beneficial / required for

* performance (latency, throughput, ...)

® power consumption

* confidentiality

CPS Summer School 2017/09/26-29, Alghero, Sardinia

2

FPGAs

® Field Programmable Gate Arrays
® Most widely used hardware target (cost, reprogrammability, ...)
® Programming means configuring

® specialize the function of Logic Elements

® configure the communication wires betwen logic elements

® Classically done with hardware description languages (VHDL, Verilog)
using RT-level descriptions

;

000 00 0N 00 09 0N o h‘.ﬁ

JDOBO0000 o

‘POBOOOB0 S =

000000 o ¢
PROGRAMMABLE g e g :
INYERCONNECLY g% 8 8 8 g 8 8 g 8 EE e

1000000008

200000000

o o o o o 00 o G0

LOGIC BLOCKS

CPS Summer School 2017/09/26-29, Alghero, Sardinia

3

FPGASs
Ex:ALTERA Stratix IV™

® 530K logic elements
® 430K registers
® 20Mb embedded memory

® |[024 18x18 multipliers

=¥ huge amount of fine grain parallelism

=¥ close-to-sensor, on-the-fly, processing

CPS Summer School 2017/09/26-29, Alghero, Sé;din]a

4

HLS :What is it ?

* High Level Synthesis

* Technology allowing obtention of an hardware implementation of a
system directly from a high level specification (typically C-like)

e ...without the need to go through a RTL (VHDL,Verilog) description

void fir (
data_t *y,
coef_t c[4],
data_t x
) { DATA PATH
acc=0;
loop: for (i=3;i>=0;i--) {
if (i==0) {
acc+=x*c[0];
shift_reg[0]=x;
} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

z
=
3
3
2
B

} oh
}
*y=acc>>2;
CPS Summer >cnool 2017/09/26-29, Alghero, Sardinia

5

Why HLS matters

® Key technology to allow heterogeneous platforms to be
programmed by « software » designers

® the amount of skills required to design hardware using HDLs is
the main cause for the productivity gap between software and
hardware

® Complex task
® some reasons are « cultural »

® .. but some are more fundamental

CPS Summer School 2017/09/26-29, Alghero, Sardinia

6

° entity binarize is
° generic (

thr : natural := 0;
im width: positive;

Why is it difficult 7 el

)i

~9

port (
clk : in std_logic;
rst : in std logic;
. . idata : in unsigned(7 downto 0);
A C function performing ival :in std logics
o o o . odata : out unsigned(7 downto 0);
image binarisation oval : out std logic
)i
4 . . .) end thr op;
void binarize(
pj_xe]_ *im, architecture rtl of binariz is
. begin
J_'nt nr, nc, process (clk, rst)
int th) begin
if (rst = ‘1’) then ...
{
for (int r=0: r<nr: r++) elif (clk’event and clk=‘1’) then
—Yr ! if (ival = 'l') then
for (int c=0; c<nc; c++) if (idata >= to_unsigned(thr,8))
im[r*nc+c] = then ,
. * - odata <= to_unsigned(1l, 8));
im[r*nc+c] > th 2 1 : 0; else
} odata <= to_unsigned(0,8));
} end if;
end if;
else

U

J
. odata <= (others => 'Z');
The same task described as a and it

end process;

VHDL process ovai < ival;

CPS Summer School end; 2017/09/26-29, Alghero, Sardinia

7

Programming h/w is not programming s/w ! (1/2)

® |n software, everything is data
® In hardware data is represented by signals
® . but data signals are not enough : control signals are also needed

® Control signals do not carry data but essentially say when a data
is valid / to be taken into account

® eX:clk, reset, enable, ...

® Using HDLs, it’s the programmer’s responsability to assert the
control signals « at the right moment »

® most of bugs in h/w designs do not come from data processing but
from the incorrect generation of control signals

® this is specially true for stream-processing apps
CPS Summer School 2017/09/26-29, Alghero, Sardinia

8

Programming h/w is not programming s/w ! (2/2)

. . . int £(...
® Software is, essentially, sequential * () A

. . 0;
(Von Neumann, imperative) d
r = g+l;
}

process(clk)
® Hardware in intrinsically parallel

begin
(massively) q <= '0";
r <= gt+l;
® As a result, time cannot be implicit
in hardware descriptions end;
CPS Summer School 2017/09/26-29, Alghero, Sardinia

9

HLS : Current solutions (for FPGAs)

® Several tools both from the commercial and academic
domains

Xilinx VIVADO ™

Intel/Altera HLS Compiler™
Cadence Stratus™ Compiler
Synopsis Synphony™ C Compiler

Maxeler MaxCompiler™

® Significant progress in the past few years
® But ..

CPS Summer School 2017/09/26-29, Alghero, Sardinia

10

HLS : still some problems ...

* Vendor tools are device/platform specific

* Performance of the generated code is generally far lower
than with handcrafted HDL code

* The generated RTL-code is generally huge, complex and
very difficult to understand for human programmers

e Ultimately requires knowledge on hardware programming...

.... which is precisely what we want to avoid !

Whether general-purpose HLS tools may ultimately offer a fully
transparent and efficient compilation path is still a open (and debated !)
question !

CPS Summer School 2017/09/26-29, Alghero, Sardinia

11

HLS : Mind the MoC!

® A suitable approach to
solve this problem is to
find a model which can be
used both as a model of
computation (to describe
applications) and a model
of execution (to
implement them on the
target hardware)

® Such a model exists : the
dataflow model

CPS Summer School 2017/09/26-29, Alghero, Sardinia

12

HLS : the fondamental problem

® An old idea
® Dennis, 1974

® Arvind, 80’s, MIT (Monsoon)

® Sérot, 1993
® Najjar-Lee-Gao, 1994 :

« two characteristics of [the dataflow model] nicely fit the execution model of
FPGAs : all data are values and all operations are purely functional [...] »

® Specially suited to stream-processing applications (processing

data « on the fly »)

® ex :signal and image processing

CPS Summer School

2017/09/26-29, Alghero, Sardinia

13

Dataflow model

Example |

X4 X3 X2 X| *

.

F

v

where: vyi = F(Xi)

CPS Summer School

* e Y4 Y3 Y2 YI

= (xi-1) (xi+1)

2017/09/26-29, Alghero, Sardinia

14

Dataflow model

Example |

Imperative formulation :

while (1) {
x=read();
y=(x-1)*(x+1);
write(y):

CPS Summer School 2017/09/26-29, Alghero, Sardinia

15

Dataflow model

Example |

Dataflow formulation

actor

—»{ inc

dup mul

dec ~
channel

CPS Summer School 2017/09/26-29, Alghero, Sardinia

16

Dataflow model

Example |

Dataflow formulation

S g P

I e PO

CPS Summer School 2017/09/26-29, Alghero, Sardinia

17

Dataflow model

Example |

Dataflow formulation

e

CPS Summer School 2017/09/26-29, Alghero, Sardinia

18

Dataflow model

Parallelism (1)

O O

—> inc

— dup mul N
—>> dec

CPS Summer School 2017/09/26-29, Alghero, Sardinia

19

Dataflow model
® Parallelism (2)

@ INC

@
: +@-> ~ MuL >

> DEC

CPS Summer School 2017/09/26-29, Alghero, Sardinia

20

Dataflow model
Parallelism (2)

o
i»@» ~ MuL 5

—{(2)> DEC

CPS Summer School 2017/09/26-29, Alghero, Sardinia

21

Dataflow model
Parallelism (2)

3 INC 3

®
: @ ~ MuL >

& DEC |

CPS Summer School 2017/09/26-29, Alghero, Sardinia

22

Dataflow model
Parallelism (2)

4 INC 4

@ our | 1@

-+ pec —I@

CPS Summer School 2017/09/26-29, Alghero, Sardinia

23

Dataflow model
Parallelism (2)

(5) INC (5)
«-+{II~{ oue {ut-@-
@ o @

CPS Summer School 2017/09/26-29, Alghero, Sardinia

24

Dataflow model
Parallelism (2)

> INC —[{@)

+-+-{owe @
®

—> DEC —(4) ®

CPS Summer School 2017/09/26-29, Alghero, Sardinia

25

Dataflow model
Parallelism (2)

— INC

o))@
O,

> DEC @
®

CPS Summer School 2017/09/26-29, Alghero, Sardinia

26

Dataflow model

Example 2 : horizontal gradient computation

Vil :j:>() : I (i—l j) = I(j—l j)=I(i-l j -1)
vi : I'(i,0) = I(i,3)

CPS Summer School 2017/09/26-29, Alghero, Sardinia

27

Dataflow model

Example 2 : horizontal gradient computation

Imperative formulation

while (1) {
for (r=0; r<nr; r++) {
pp = read pixel();
write pixel(pp);
for (c=1; c<nc; c++) {
p = read pixel();

p’ = p-pPp;

write pixel(p’);
pp = p’;

}

CPS Summer School 2017/09/26-29, Alghero, Sardinia

28

Dataflow model

Example 2 : horizontal gradient computation

Dataflow formulation

| DUP SUB |—>

A

N

I' = I - DIP(I)

I’

CPS Summer School 2017/09/26-29, Alghero, Sardinia

29

Dataflow model

Example 2 : horizontal gradient computation

Dataflow formulation

102/ 30| 5 |90 0 |102|30] 5

3 |53]80|12 0|3 |53]|80
—

90 [53| 44 |110 0 | 90|53 |44

11|82 45 [100 0 |11 82|45

D1P: < < 102 30 5 90 > < 3 53 80 12 > < 90 53 44 110 > < 11 82 45 100 > >

= << 0102 30 5><0 35380>< 0209053 44 >< 0 11 82

Purely functional operator

45 > >

CPS Summer School 2017/09/26-29, Alghero, Sardinia

30

Dataflow model

Example 2 : horizontal gradient computation
Dataflow formulation

102 30| 5 |90

90 | 5344|110 102|-72(-25] 85

11|82 |45 | 1001, 3 |50 27|-68
-
/ SUB 90 [-37| -9 | 66
0 |102|30] 5

11|71 |-37| 55

< <102 30 5 90 > < 35380 12 > < 90 53 44 110 > < 11 82 45 100 > >
- << 0 102 30 5><0 353 80 >< 0 9053 44 >< 011 82 45 > >

= < < 102 -72 -25 85 > < 3 50 27 -68 > < 90 -37 -9 66 > < 11 71 -37 55 > >
CPS Summer School 2017/09/26-29, Alghero, Sardinia

31

Dataflow model

® What has been presented is actually of model of computation

® But it can also be viewed as model of execution on a FPGA :
® channels = FIFOs — direct h/w implementation

® actors = independent synchronous processes executing
asynchronously = direct h/w implementation as FSMs

® No need for global synchronization
— control signals can be embedded as data tokens

® Natural support of pipelining for on-the-fly processing

CPS Summer School 2017/09/26-29, Alghero, Sardinia

32

From model to language

® Ok, but we just can program by drawing bubbles and
arrow, can’t we !

® Need a formalism to describe / specify

® the topology of the actor network

® the behavior of individual actors
® Formalism means syntax + semantics

® formal semantics allows sound compilation, proofs, ...
® Several dataflow languages.

® |et’s introduce CAPH
CPS Summer School 2017/09/26-29, Alghero, Sardinia

33

CAPH

® A domain specific programming language (DSL) for
implementing stream-processing applications on
FPGAs

® Developped since 2010 at Institut Pascal / UCA

® |nitial goal : provide a tool for s/w programmers to
implement applications on FPGA-based smart
cameras

® Has gradually evolved towards a HLS system

CPS Summer School 2017/09/26-29, Alghero, Sardinia

34

CAPH

® Short introduction to the language concepts here

® More in the « hands on » tutorial on Friday

CPS Summer School

2017/09/26-29, Alghero, Sardinia

35

® [wo main parts

CAPH

® network language

® actor language

CPS Summer School

2017/09/26-29, Alghero, Sardinia

36

Caph Network Language

® Dataflow graphs may be described as expressions in a
purely functional language

® nodes correspond to function application and links to data
dependencies

® Textual descriptions scale (much) better than graphical

ones

® Consistency can be checked using type-checking

® Graph patterns can be encapsulated as higher-order

functions

CPS Summer School

2017/09/26-29, Alghero, Sardinia

37

The CAPH Network Language Exemple |

0

CPS Summer School

actor al
in (i:int) out (ol:int, o02:int) ..
actor a2
in (i:int) out (o:int) ..;
actor a3
in (i:int) out (o:int) ..;
actor a4
in (il:int, o2:int) out (o:int) ..;

net (x,y) = al i
net x1 = a2 x

net yl = a3 y

net o = a4 (x1, yl)

2017/09/26-29, Alghero, Sardinia

38

The CAPH Network Language Exemple 2

(=) (=)

0

CPS Summer School

actor al ..
actor a2 ..
actor a3 ..
actor a4 ..

net diamond f1 f2 £f3 f4 x =
let (x2,x3) = f1 x in
f4 (£2 x2, £3 x3);

net o = diamond al a2 a3 a4 i;

Ghigher—order) wiring function)

2017/09/26-29, Alghero, Sardinia

39

The CAPH Network Language Exemple 3

(V]

CPS Summer School

actor al .
actor a2 .
actor a3 ..
actor a4 .

net diamond f1 f2 £f3 f4 x =
let (x2,x3) = f1 x in
f4 (£2 x2, £3 x3);

net X = diamond al a2 a3 a4 x;
net o = diamond al ad i;

2017/09/26-29, Alghero, Sardinia

40

Higher-order wiring functions

| s e |y oll net neighl3(x) =
| ‘ : > o012 Xy
. } . EI dp x,
Y > P if_’—ﬂ ot dp (dp x);
\ e ‘.l » o2l net neigh33(x) =
k,_"_\ SR p— : > 022 neighl3 x,
i) _ i neighl3 (dl x),
A B > DB > 023 neighl3 (dl (dl x));
| gl—— ‘]
| El » 031 net
Nt B — (011,012,013),
|| oo K| Dp » Dp [033 (021,022,023),
| _/‘ —/ -/ il (031,032,033))=
L, epassassaspssasil neigh33(i);
CPS Summer School 2017/09/26-29, Alghero, Sardinia
41
The CAPH Actor Language Exemple |
® Behavior described a a set of transition rules
® Activation of rules based on pattern-matching
6
4 .
8 actor 1nc
N
in (i : int) |/Os
out (o : int)
rules) .
Transition
| i:x > o0:x+1 |ryles
Y,
8
CPS Summer School 2017/09/26-29, Alghero, Sardinia

42

The CAPH Actor Language Exemple 2

2 g actor switch
8 9 in (il : int,

i2 : int)
out (o : int)
switch (var s : (Left,Right) = Left) Local var

rules

| s:Left, il:v » o:v, s:Right [Transition
rules

8 | s:Right, i2:v » o:v, s:Left

CPS Summer School 2017/09/26-29, Alghero, Sardinia

43

The CAPH Actor Language Exemple 3

<45><123>>i suml o 9 6
type ‘a dc = actor suml
EoS in (a: int dc)
| sos out (c: int)
| Data of ‘a var st: {S0,S1}=S0
var s : int
rules

st:S0, a:SoS = st:S1, s:0
| st:81, a:Data v = st:S1, s:s+v
| st:S1, a:EoS = st:S0, c:s

CPS Summer School 201//09/26-29, Alghero, Sardinia

44

The CAPH Actor Language Exemple 4

1021 30| 5 | 90 0 |102| 30| 5

3 |53|80]|12 0 3 [53|80
m

90 | 53 | 44 (110 0 | 90| 53] 44

11|82 (45 |100 0 | 11|82 45

actor dlp
in (i:signed<8> dc)
out (c:signed<8> dc)
var s : {s0,S1,s82} = sO
var z : signed<8>

rules
| s:50, i:S0S = s:S1, c:SoS -- Start of Frame
| s:S1, i:EoS = s:S0, c:EoS -— End of Frame
| s:81, i:EoS = s:S2, c:EoS, z:0 -— Start of Line
| s:52, i:Data v = s:S2, c:Data z, z:v -- Pixel
| s:S2, i:S0S = s:S1, c:EoS -— End of Line
CPS Summer School 2017/09/26-29, Alghero, Sardinia
45
A sample Caph program
(function £ abs x = N\
if x < 0 then 0-x else x Global values
e Signed<8> -> Signed<8>; wi:signed<8> dc wl:signed<8> dc
\Fonstant threshold = 40;) Ve — ™
Vs ~ actor thr (k:unsigned<8>)
actor dl ; Q :
p () Actors in (a:unsigned<8> dc)

out (c:unsigned<l> dc)
rules a -> ¢
| '< —> '<
| 'p -=> if p > k then 'l else '0
| '> —> '>

(& %
w10:signed<8> dc

actor thr (t:signed<8>) 7 1/Os

\
r 7

stream i:signed<8> dc from "dev:cam0";
stream o:signed<8> dc to "dev:monl';
L

actor dll ()
actor add ()

actor asub ()

net g = add (asub(i, dlp i), asub(i, dll i));
net o thr [threshold] g;

AN

Network description
CPS Summer School 2017/09/26-29, Alghero, Sardinia

46

CAPH Language extra features

* Caph is strongly inspired by functional programming languages
(ML, Haskell, ...)
* Several powerful concepts offered by these languages supported
* pattern-matching
¢ user-defined algebraic data types
* higher-order functions
* parametric polymorphism
¢ dependant types

* Caph is the only HLS language offering this level of abstraction

* this contributes both to expressivity and safety

CPS Summer School 2017/09/26-29, Alghero, Sardinia

47

Parametric polymorphism

(éctor mux A féctor mux N (. h
in (el:signed<8>, in (el:unsigned<4>,
e2: signed<8>, e2:unsigned<4>,
c:bool) c:bool)
out (s: signed<8>) out (s:unsigned<4>)
rules rules
| el:x, c:true -> s:x | el:x, c:true -> s:x
| e2:x, c:false -> s:x | e2:x, c:false -> s:x
7 7
\ J 0 AN Y,

CPS Summer School : 2017/09/26-29, Alghero, Sardinia

48

Parametric polymorphism

(")

actor mux

in (el:St,
2: St .
i_boil; Textemplementation :

out (s: $t) - SystemC templates
rules -VHDL replicated code
| el:x, c:true -> s:x

| e2:x, c:false -> s:x
\ ‘/

CPS Summer School <:::> 2017/09/26-29, Alghero, Sardinia

49

User-defined algebraic data

(A
type $t option =
Some of St
| None s N
type $t dc =
actor foo EoS —— aka “’<”
in (a: bool option) | Sos -— aka “’'>"
out (c: bool) | Data of $t -- aka “’v”
rules
| a:Some x -> c:not x \ Y,
| a:None -> c:
N J

CPS Summer School 2017/09/26-29, Alghero, Sardinia

50

Higher-order actors

4 N\) ()
actor inc actor double *ee
in (e:signed<8>) in (e:signed<8>)
out (s: signed<8>) out (s: signed<8>)
rules rules
X -> x+1 X => X*2
net o = inc 1 net o = double 1
_ O\l J _ Y,

®

2017/09/26-29, Alghero, Sardinia
51

CPS Summer School

Higher-order actors

()
function inc x = x+1 : signed<8> -> signed<8>;
function double x = x+2 signed<8> -> signed<8>;
actor map (f: signed<8> -> signed<8>)

in (e:signed<8>)
out (s: signed<8>)
rules
| x => £(x)
net ol = map inc 1i;
net o2 = map double ij;
_ J

<:::> 2017/09/26-29, Alghero, Sardinia
52

CPS Summer School

Dependant types

(actor add

in (el:unsigned<g>,
e2:unsigned<g>)

out (s: unsigned<9>)

(actor add
in (el:unsigned<n>,
e2:unsigned<n>)
out (s: unsigned< >)

rules rules
el:x, e2:y -> s:x+ty el:x, e2:y -> s:x+ty
\ J _ J
CPS Summer School 2017/09/26-29, Alghero, Sardinia
53
The Caph toolset
Source
. . Code
® Graph visualizer : .dot
fo rm at Front-end (Parsing, Visualizer
type checking)
Reference
® Refe rence Abstract interpreter
. Syntax Tree
|nterpreter:
Compiler

® based on the fully
formalized semantics

® tracing, profiling and
debugging

e Compiler:

® elaboration of a
target-independant IR

® specialized backends
(SystemC,VHDL)

CPS Summer School

|

Intermediate
- —>
Representation

SystemC
Back-end

VHDL
Back-end

(Fifo size)

Back Annotations

]

2017/09/26-29, Alghero, Sardinia

FPGA

54

Elaboration

® Three steps
|. network generation
2. RT-level description of actors
3. SystemC/VHDL transcription

® Only a quick overview here (see papers & LRM)

CPS Summer School 2017/09/26-29, Alghero, Sardinia

55

l. Network generation

® Using abstract interpretation net y = £ (g x)
of the network Iy!
description, viewed as a
functional program

® Each application of a £
function bound to an actor
inserts an instance of this
actor into the graph

® Each functional &
dependency inserts a
channel ot ety
<— —>
® channels are then g F=» dout,l ¢
instanciated as FIFOs N |

CPS Summer School 2017/09/26-29, Alghero, Sardinia

56

a
D cims

| st:S1, a:‘> > st:S0, c:s

CPS Summer School

Example : suml :
actor suml ()

in (a: int dc)

out (c: int)

var st: {S0,S1}=S0

var s : int

rules

st:S0, a:’< = st:S81, s:0
| st:S1, a:‘v = st:S1, s:s+v

Il. Translation of actor to RTL
Set of transition rules = FSM + operations (FSMD)

<12 3>=066

2017/09/26-29, Alghero, Sardinia

57
I1.VHDL 1 Ipti Exampl
. I"anSCI"IPtIOI’l Xample
N)
actor suml () .
in (a: int dc) begin
out (c: int) if (reset='0") then
var st: {S0,S1}=S0 SJ.C :=.S(.); ard <= "0'; c_wr <= "0';
e § g Ame elsif rlilzg_?dge(clock) then
rules st,a,s-> st,c,s case stare 1s
0.'< > s1 0 when S0 =>
S0, °<,_ S1,_, if a_empty='0' and is_sos(a) then
| s1,'v,s & s1,_ ,s+v a_rd <= 'l';
| s1,'>,s & s0,s,_ st := S01;
\§ AN s := conv_std logic_vector(0,15);
entity sum act is end if;
port (when S01 =>
a_empty: in std_logic; a rd <= '0'; state <= S1;
a: in std_logic_vector(9 downto 0); when S1 =>
a_rd: out std_logic; if a empty='0' and is_data(a) then
c_full: in std_logic; ard <= 'l'; v := data_from(a);
c: out std_logic_vector(1l5 downto 0); s := s+v; st := S11;
c_wr: out std_logic; end if;
clock: in std_logic; if a_empty='0' and is eos(a) then
reset: in std_logic ard<='"l"; ¢ := s;
)i c wr <= 'l'; st := S12;
end sum_act; end if;
when S11 =>
architecture FSM of sum act is ard <= '0'; st := S1;
type t_state is (S0,S01,S1,S11,S12); when S12 =>
begin ard <= '0'; c_wr <= '0'; st := 50;
process (, reset) end case;
variable s : std_logic_vector (15 downto 0); end if;
variable st : t_state; end process;
variable v : std_logic_vector(7 downto 0); end FSM;

CPS Summer School

2017/09/26-29, Alghero, Sardinia

58

lll. Synthesis (RT-level = Gate level)

Using vendor-specific tool-chains

Example :
suml actor synthetized on a Stratix IV using Altera Quartus 9

CPS Summer School 2017/09/26-29, Alghero, Sardinia

59

Testbench example
DreamCam Smart camera

. owy
*Modular hardware architecture

* CMOS imager '
* Inertial device l
* Altera Stratix FPGA

* 5 external SRAM memory blocks

* USB interface for host communication

* Dedicated framework for interfacing CAPH designs

FPGA

Image CAPH Host
Sensor > - -> . > > > Communication >

Communication Board

CPS Summer School 2017/09/26-29, Alghero, Sardinia

60

Example applications

* Harris-Stephen detector
* Real-time tracking of moving objects
* Connected component labeling

* HOG-based pedestrian and vehicle detection
* H264 encoder

[J
CPS Summer School 2017/09/26-29, Alghero, Sardinia
61
HAVE A TRY ?
0o CAPH
< > G B2+ O caohuniv-bpclermont fr [|
A cam | .. |
CAPH w Downloa D ation Code samples D " AQ
CAPH .
High level dataflow programming for FPGAs °* o

About CAPH

CAPH is a domain-specific language for describing and implementing stream-processing applications on reconfigurable hardware,
such as FPGAs. CAPH generates VHDL code from high-level descriptions of signal or image processing applications. CAPH relies
upon the actor/dataflow model of computation. Applications are described as networks of purely dataflow actors exchanging
tokens through unidirectional channels and the behavior of each actor is defined as a set of transition rules using pattern matching.

+ Higher-order, purely functional language for description of complex dataflow networks
+ Fully polymorphic type-checking

+ Stateful actors

+ Pattern-matching based description of actor behavior

* Graphical visualisation of dataflow networks

+ Code simulation with trace faciities

* SysternC back-end for simulation

* Generatos target-independant, ready-to-synthetize VHDL code

* Foreign-function interface 1o use existing SystemC or VHDL code

..or see you Friday ;)

62

