
Christian	Pilato (Università	della	Svizzera	Italiana)	
and

Francesca	Palumbo	(Università	degli	Studi	di	Sassari)

From	high-level	specification	
down	to	hardware

Heterogeneous Systems-on-Chip

iPhone 6 features the A8 SoC
• 8.47 x 10.50 mm (20nm by TSMC)

• 13% smaller than A7 (28nm)
• dual-core ARM CPU at 1.40 GHz

• 25% more CPU performance
• four-cluster PowerVR GPU

• 50% more graphics performance
• 2 billions of transistors

• twice the number of transistors compared
to the A7

• almost 30 out-of-core accelerators
• 50% of the power compared to A7 (~20

out-of-core accelerators)

Out-of-Core
Accelerators

[D
ie
	p
ho

to
	fr
om

	C
hi
pw

or
ks

-A
cc
el
er
at
or
s	
an
no

ta
te
d	
by
	Y
.S
.	S
ha
o	
@
	

H
ar
va
rd
]

Dark Silicon is the Next Big Issue

“MOORE’S LAW: The number of transistors on an affordable CPU
would double every two years” (G.E. Moore, 1976)

20+ years of CPU improvements
(pipeline stages, branch predictions,

multicore, etc.), but we hit the
utilization wall!

“With each successive generation,
the percentage of a chip that can

actively switch drops exponentially
due to power constraints”

dark silicon is pushing towards
heterogeneous computing

ESP: Embedded Scalable Platform

Embedded platform with:
• Leon3 processor
• Possibility to plug-and-play a variety of

accelerators
• On-chip communication with DRAM controllers

• Latency-insensitive NoC

FPGA prototype for full-system
evaluation
• 100 MHz
• 1 GB of DDR3 memory with two

physically-separated address spaces

NoC:	Efficient	data	
movements

Running	a	complete	
Linux	OS

Generated	and	
optimized	with	

HLS

Mantovani et al.
ASPDAC 2016

Abstracting Accelerator-based Systems

Specialized microarchitecture for both computation and storage
• For delivering energy-efficient high performance

SoC Hardware Accelerator

DMA

Accelerator Logic

PLM

bank

bank

bank

bank

Conf. Regs

system interconnect

HW
ACC

DRAM
Ctrl

CPU DRAM

Multiple accelerators
on the same system
interconnect (bus or

network-on-chip)

CPU to prepare the
data in DRAM and

control the
accelerator (e.g.,

device driver)

PLM and DRAM: A Huge Gap

Bench. DRAM Data Size
(MB)

PLM Data Structures
Bench. DRAM Data Size

(MB)
PLM Data Structures

(#) (MB) (#) (MB)

Sort 4.000 6 0.024 FFT1D 0.250 10 0.040

FFT2D 64.000 4 0.128 Debayer 16.000 4 0.096

Lucas Kan. 32.000 11 0.020 Change Det. 320.000 10 0.062

Interp. 1 32.040 6 0.048 Interp. 2 64.010 7 0.640

Backproj. 256.040 8 0.099 Diparity 15.820 11 0.146

PCA 20.190 3 0.117 SRR 4.760 21 0.076

Each accelerator is ~1mm2

• Comparable to Apple A8
accelerators

PLM occupies 75% to 98%
of accelerator area
• Still a lot of data transfers0%

20%

40%

60%

80%

100%

74.80% 73.31%

94.60% 98.61%

85.45% 86.68% 84.43%
76.50%

93.33%
98.85% 97.65% 97.06%

 a
cc

el
er

at
or

 a
re

a
oc

cu
pi

ed
 b

y
th

e
PL

M

Sort
FFT1D

FFT2D
Debayer

Lucas K
an.

Change Det.
Interp. 1

Interp. 2

Backproj.

Disparity PCA SRR

Why Out-of-core Accelerators?

Loosely-coupled accelerators are more efficient in case of large data
sets to elaborate
• Part of the data can be locally stored in Private Local Memories for fast access

DMA	
Ctrl	

Input	

Computa0on	1	

Output	

Computa0on	n	ke
rn
el
()	

Private	Local	Memory	

PLM	ports	

ping-pong	buffer	

read	

write	
circular	buffer	

1	
2	
3	

4	5	
6	

…	

1	 2	

in	

out	

Accelerator	Logic	

Cota et al.
DAC 2015

Out-of-core Accelerators

Accelerator logic with specialized micro-
architecture to exploit hardware parallelism

Input

Computation	
1

Output

Computation	
n

Accelerator Logic

Out-of-core Accelerators

Private Local Memory with multiple
ports to offer more hardware parallelism

Private Local	Memory

ping-pong	buffer

read

write
circular	buffer

1
2
3

45
6

…

1 2

in

out

PLM ports

Out-of-core Accelerators

Communication processes and DMA
controller to exchange data with the rest of the

system

DMA
Ctrl

Input

Output

From Programmer’s View to RTL

C language allows us to easily specify, design, and optimize
accelerators for irregular applications
• pointer-based operations (arithmetic, dynamic resolutions, accesses to external

memory, …)

void Gsm_LPC_Analysis(word* so, word* LARc)
{

longword L_ACF[9];
Autocorrelation(so, L_ACF);
Reflect_coeff(L_ACF, LARc);
To_Log_Area_Rat(LARc);
Quant_and_coding(LARc);

} GSM_LPC_Analysis

C
on

tro
lle

r

Conf. registers

Datapath SP
M
(L
_A
C
FAutocorrelation

C
on

tro
lle

r

D
at

ap
at

h

Reflect_coeff

C
on

tro
lle

r

D
at

ap
at

h

To_Log_Area_Rat

C
on

tro
lle

r

D
at

ap
at

h

Quant_and_coding

C
on

tro
lle

r

D
at

ap
at

h

Mem. Interfaceso L_ARc

From Programmer’s View to RTL

SystemC language allows us to easily specify, design, and optimize
data-intensive accelerators
• DMA transfers to exchange data blocks with main memory

SC_MODULE(debayer) {
sc_in<bool> clk, rst;

private:
int A0[6][2048];
int B0[2048], B1[2048];

public:
SC_CTOR(debayer) {
SC_CTHREAD(Load, clk.pos());
reset_signal_is(rst, false);
SC_CTHREAD(Compute, clk.pos());
reset_signal_is(rst, false);
SC_CTHREAD(Store, clk.pos());
reset_signal_is(rst, false);

//...

PLM Unit (A0)
[12288x32]

PLM Unit (B0)
[2048x32]

PLM Unit (B1)
[2048x32]

Private Local
MemoryAccelerator Logic

Load

Compute

Store

Configuration Registers

DM
A

C
on

tro
lle

r

Ctrl A0

Ctrl B0

Ctrl B1

sync

sync

Good News and Bad News

The Good News:
• Abundant data parallelism enables high performance

• Hardware parallelism
• Specialized micro-architecture enables energy efficiency

• Possibility to turn off the component when inactive
• High-Level Synthesis (HLS) tools come in handy

The Bad News:
• Lack of unified design and programming models

• Limited reusability
• Communication overheads

• Especially in case of many accelerators running together and competing for the memory
• Hardware parallelism requires a specialized local memory

• Many data to process in the same clock cycle

HLS-based Design Flow

High-Level Synthesis (HLS) tools are pretty good to design the
accelerator logic
• Description in a high-level language (e.g., C/C++/SystemC)
• Several compiler-based, technology-aware optimizations

HLL
Spec

Tech
Library

Constraints

HLS
Scheduling

Resource Binding

Controller Synthesis

Accelerator
(HDL)

Testbench
(HLL/HDL)

Compiler Frontend
Wrapping

Analysis

Transformations

Nane et al.
TCAD 2016

Generating Optimized Heterogeneous SoCs

High-Level Synthesis (HLS) to create
the accelerator logic
• Definition of memory-related parameters

(e.g. number of process interfaces)

System-level sharing of resources
with Multi-Dataflow Composer (MDC)

Generation of specialized PLMs
• Technology-related optimizations
• Possibility of system-level optimizations

across accelerators

Accelerator Tile

DMA
Ctrl

Load

Compute 1

Store

Compute nke
rn

el
()

Private Local
Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
2
3

45
6

…

1 2

in

out

Accelerator Logic

Memory Library
Mnemosyn

e
(in-house)

High-Level
Synthesis

Data
Structures

High-Level
Description
(SystemC)

Francesca	Palumbo,	University	of	Sassari
Reconfigurable	Platform	Composer	Tool	Project

• DATAFLOWMODEL OF COMPUTATION
– Modularity and parallelism® EASIER INTEGRATION AND

FAVOURED RE-USABILITY
• COARSE-GRAINED RECONFIGURABILITY

– Flexibility and resource sharing®MULTI-APPLICATION
PORTABLE DEVICES

Target & Technological Challenges

• DATAFLOWMODEL OF COMPUTATION
– Modularity and parallelism® EASIER INTEGRATION AND

FAVOURED RE-USABILITY
• COARSE-GRAINED RECONFIGURABILITY

– Flexibility and resource sharing®MULTI-APPLICATION
PORTABLE DEVICES

Reconfigurable	Platform	Composer	Tool	Project
Automated	 are	fundamental	to	guarantee	

.	Dealing	with	
systems,	in	particular	for	 ,	state	of	

the	art	still	lacks	in	providing		a	broadly	accepted	solution.

Target & Technological Challenges

Dynamic	Power	Manager

Multi	Dataflow	Composer	Tool

Structural	Profiler

Co
-P
ro
ce
ss
or
	

Ge
ne
ra
to
r	

http://sites.unica.it/rpct/

MDC	design	suite

Design Suite & Targeted Challenges

Dynamic	Power	Manager

Multi	Dataflow	Composer	Tool

Structural	Profiler

Co
-P
ro
ce
ss
or
	

Ge
ne
ra
to
r	

Functional	Complexity
Time	to	Market:
Design	&	Mapping	

Automation

http://sites.unica.it/rpct/

MDC	design	suite

Design Suite & Targeted Challenges

Dynamic	Power	Manager

Multi	Dataflow	Composer	Tool

Structural	Profiler

Co
-P
ro
ce
ss
or
	

Ge
ne
ra
to
r	

Functional	Complexity
Time	to	Market:
Design	&	Mapping	

Automation

Constraint
Driven	

Optimisation

http://sites.unica.it/rpct/

MDC	design	suite

Design Suite & Targeted Challenges

Dynamic	Power	Manager

Multi	Dataflow	Composer	Tool

Structural	Profiler

Co
-P
ro
ce
ss
or
	

Ge
ne
ra
to
r	

Power	
Efficiency

Functional	Complexity
Time	to	Market:
Design	&	Mapping	

Automation

Constraint
Driven	

Optimisation

http://sites.unica.it/rpct/

MDC	design	suite

Design Suite & Targeted Challenges

Dynamic	Power	Manager

Multi	Dataflow	Composer	Tool

Structural	Profiler

Co
-P
ro
ce
ss
or
	

Ge
ne
ra
to
r	

Power	
Efficiency

Functional	Complexity
Time	to	Market:
Design	&	Mapping	

Automation

Constraint
Driven	

Optimisation

http://sites.unica.it/rpct/

Fast	Integration
and	Prototyping

MDC	design	suite

Design Suite & Targeted Challenges

coarse	grained
substrate

C D
A
B C D

A

B
1:1

Baseline: From Dataflow to Hardware

coarse	grained
substrate

coarse	grained	
reconfigurable

substrateC D
A
B

E DA

C D
A
B

S
B

C D

E
S
B

A

B

C D
A

B

1:1

2:1

Baseline: From Dataflow to Hardware

MDC	front-end

α
C D

A
B E DA DF

β γ

SB
0

E
A

CB

SB
1 SB

2F
D

SB 0 1 2

α 1 0 1

β 0 x 0

γ x x 1

0

1

0

1

0

1
multi-dataflowshared

MDC Frontend: Datapath Merging

CGR	substrate

SB
0

E
A

C
B

SB
1

SB
2

F
D

SB 0 1 2

α 1 0 1

β 0 x 0

γ x x 1

MDC	back-end
S
B
0 S

B
2

A

B D
S
B
1 F

E
C configurator

sel0

sel1
sel2

ID

0

1 0

1
1

0

HDL	components
library

A B
C F

E
D

hardware
communication

protocol

MDC Backend: HW System Implementation

composition

MDC	front-end

optimisation generation

MDC	back-end

IR.java

multi-dataflow

HDL	components
library

RVC-CAL
hardware
protocol

Integration within the MPEG-RVC Framework

composition

Orcc font-end

.cal

MDC	front-end

optimisation

.xdf

TURNUS causation	trace	
analysis

worst	case	
parsing	script

generation

XRONOS	high	
level	synthesis

MDC	back-end

IR.java

multi-dataflow

action	weights

optimal	FIFOs	
size	per	IR

RVC-CAL
dataflows

multi-dataflow
optimal	FIFOs	size

HDL	components
library

RVC-CAL
hardware
protocol

CGR	substrate	

S
B

Integration within the MPEG-RVC Framework

What	are	the	topological	characteristics	impacting	on	the	CGR	substrate?
1.	Number	of	merged	dataflow specifications

SB EA
CB

SB
SB

F
D

SB EA
CB

SB

DF
D

α+β+γ

α+β|γ

E DA DFC DA
B α β γ

Structural Profiler

What	are	the	topological	characteristics	impacting	on	the	CGR	substrate?
1.	Number	of	merged	dataflow specifications

SB EA
CB

SB
SB

F
D

SB EA
CB

SB

DF
D

α+β+γ
tot	static	power

73	μW
L

α+β|γ
tot	static	power

72	μW
J

E DA DFC DA
B α β γ3

μW

4
μW13

μW

27
μW7

μW

3
μW 3

μW
11
μW

2
μW

3
μW

4
μW13

μW

27
μW7

μW

3
μW

2
μW

11
μW

2
μW

Structural Profiler

B DD DBC DA
B α β γ

SBB
CA

SB D
D

SB

CA
BSB SB

SB SB
D SB

D
SB

α+γ+β

β+α+γ

What	are	the	topological	characteristics	impacting	on	the	CGR	substrate?
2.	Merging	order

Structural Profiler

B DD DBC DA
B α β γ

SBB
CA

SB D
D

SB

CA
BSB SB

SB SB
D SB

D
SB

α+γ+β
frequency
45	MHz

J

β+α+γ
frequency
42	MHz

L

internal	CP
external	(SB)	CP

What	are	the	topological	characteristics	impacting	on	the	CGR	substrate?
2.	Merging	order

Structural Profiler

B CA D EA B CF H EG
Sequences
Generator

N	input
dataflows

Structural Profiler

B CA
D EA
B CF
H EG

SB SBA
DF
HG

B C

SB E

SB

A
F

B C
D EA
H EG

!NDm =

å
-

=

=
2

1 !
!N

k
pm k

ND

B CA D EA B CF H EG
Sequences
Generator

mer

part
mer

not
mer

1=mnD

M
DC

	fr
on

t-e
nd

not	merged

partially	merged

merged

N	input
dataflows

Structural Profiler

B CA
D EA
B CF
H EG

SB SBA
DF
HG

B C

SB E

SB

A
F

B C
D EA
H EG

!NDm =

å
-

=

=
2

1 !
!N

k
pm k

ND

pr
e-
sy
nt
he
sis low	level

feedbackai piCPj

B CA D EA B CF H EG
Sequences
Generator

mer

part
mer

not
mer

1=mnD

M
DC

	fr
on

t-e
nd

not	merged

partially	merged

merged

N	input
dataflows

Structural Profiler

å
=

=
M

i
ia

1

Area

å
=

=
M

i
ip

1
Power

),max(
11

SBin CPCPCP
==Frequency

)max(jin CPCP =

)()ln(*)(bgNbfCP SBSB +=
empirical	functions
of	the	SB	size	in	bits	b

number	of	SBs	
in	the	DP	chain

number	of	actors	
involved	in	the	DP

ai/ pi	=	actor	area/power
CPj	=	input	dataflow	critical	path

longest	SB	chain
within	the	DP

SB SBA
DF
HG

B C

SB E

low	level
feedback

ai piCPj

current	design
point	(DP)

Structural Profiler

Automated	Pareto	Analysis

2

MSs=	Merged	dataflow	Specifications	(example	with	N=7)

Structural Profiler

Automated	Pareto	Analysis

AREA/POWER	OPTIMAL

FREQ.	OPTIMAL

2

MSs=	Merged	dataflow	Specifications	(example	with	N=7)

Structural Profiler

α
C D

A
B E DA DF

β γ

SB
0

E
A

CB

SB
1 SB

2F
D

Dynamic Power Management

α
C D

A
B E DA DF

β γ

SB
0

E
A

CB

SB
1 SB

2F
D

E DA DF

SB
0

E
A

CB

SB
1 SB

2F
D

α execution:	E	and	F	are	wasting power!	

Dynamic Power Management

α
C D

A
B E DA DF

β γ

SB
0

E
A

CB

SB
1 SB

2F
D

E DA DF

SB
0

E
A

CB

SB
1 SB

2F
D

C D
A
B E DA

SB
0

E
A

CB

SB
1 SB

2F
D

β execution:	B,	C	and	F	are	wasting power!	

Dynamic Power Management

α
C D

A
B E DA DF

β γ

SB
0

E
A

CB

SB
1 SB

2F
D

E DA DF

SB
0

E
A

CB

SB
1 SB

2F
D

C D
A
B E DA

SB
0

E
A

CB

SB
1 SB

2F
D

DFE DA

SB
0

E
A

CB

SB
1 SB

2F
D

γ execution:	A,	B,	C,	E,	SB0	and	SB1	are	wasting power!	

Dynamic Power Management

S
B

E
A

CB

S
B S

B
F

D
E DA

DF
C D

A
B α β

γ M
DC

	fr
on

t-
en

d

Dynamic Power Management

C
F

D
A

B
E

Lo
gi
c	R

eg
io
ns
	

(L
Rs
)

Id
en
tif
ica

tio
nLR 1 2 3 4 5

actors A B,C D E F

α 1 1 1 0 0

β 1 0 1 1 0

γ 0 0 1 0 1 γα

β

S
B

E
A

CB

S
B S

B
F

D
E DA

DF
C D

A
B α β

γ M
DC

	fr
on

t-
en

d

Dynamic Power Management

low	power	(clock	gated)	
CGR	substrate

en	generator

C
F

D
A

B

E

ID

clk
configuratoren 1en 2en 3en 4en 5

LR actors α β γ

1 A 1 1 0

2 B,C 1 0 0

3 D 1 1 1

4 E 0 1 0

5 F 1 0 1

MDC	back-end

Dynamic Power Management

SY
ST
EM

	B
U
S

HARDWARE	ACCELERATOR/CO-PROCESSOR

LOCAL
MEMORY

CONFIG
REGS

(manually	
assembled)

S
B

E
S
BC D

A
B

Co-processor Generator

SY
ST
EM

	B
U
S

HARDWARE	ACCELERATOR/CO-PROCESSOR

LOCAL
MEMORY

CONFIG
REGS

(manually	
assembled)

S
B

E
S
BC D

A
B

Co-processor Generator

SY
ST
EM

	B
U
S

HARDWARE	ACCELERATOR/CO-PROCESSOR

LOCAL
MEMORY

CONFIG
REGS

(manually	
assembled)

S
B

E
S
BC D

A
B

Co-processor Generator

SY
ST
EM

	B
U
S

HARDWARE	ACCELERATOR/CO-PROCESSOR

LOCAL
MEMORY

CONFIG
REGS

(manually	
assembled)

S
B

E
S
BC D

A
B

Co-processor Generator

SY
ST
EM

	B
U
S

HARDWARE	ACCELERATOR/CO-PROCESSOR

LOCAL
MEMORY

CONFIG
REGS

(manually	
assembled)

S
B

E
S
BC D

A
B

Co-processor Generator

SY
ST
EM

	B
U
S

HARDWARE	ACCELERATOR/CO-PROCESSOR

LOCAL
MEMORY

CONFIG
REGS

(manually	
assembled)

HUGE	
EFFORT!!!

S
B

E
S
BC D

A
B

Co-processor Generator

S
B

E
A

CB

S
B S

B
F

D
E DA

DF

C D
A
B α β

γ

M
DC

	fr
on

t-
en

d

SB 0 1 2

α 1 0 1

β 0 x 0

γ x x 1

Co-processor Generator

Co-Processor	Characterization

S
B

E
A

CB

S
B S

B
F

D
E DA

DF

C D
A
B α β

γ

M
DC

	fr
on

t-
en

d

SB 0 1 2

α 1 0 1

β 0 x 0

γ x x 1

app	ID
app	I/O

Co-processor Generator

#	of	I/O
I/O	size

I/O	pattern

Co-Processor	Characterization

S
B

E
A

CB

S
B S

B
F

D
E DA

DF

C D
A
B α β

γ

M
DC

	fr
on

t-
en

d SB 0 1 2

α 1 0 1

β 0 x 0

γ x x 1

Template
configuration

Driver	
specification

#	of	I/O
I/O	size

I/O	pattern

app	ID
app	I/O

.vhd

.csoftware
drivers

co-processor
architectural

template

Co-processor Generator

Co-Processor	Deployment

Xilinx	EDK	wrapper
template

CGR

APIs

.vhd .c
S
B

E
A

CB

S
B S

B
F

D

M
DC	back-
end.vhd

communication
link

software
drivers

co-processor
architectural	template CGR	substrate

Extension: Co-processor Generator

Co-Processor	Deployment

Xilinx	EDK	wrapper
template

CGR

APIs

.vhd .c
S
B

E
A

CB

S
B S

B
F

D

M
DC	back-
end

software
drivers

co-processor
architectural	template

.vhd

CGR	substrate

communication
link

• mm-sys:
memory-mapped	
(loosely	coupled)

• s-sys: stream-based	
(tightly	coupled)

Extension: Co-processor Generator

How to Design Private Local Memories?

Dedicated (multi-port) local memories for storing part of the data
• memory design transparent to accelerator logic
• alternative implementations with block/cyclic partitioning

B0-1

PLM Unit (A0)
[12288x32]

PLM Unit (B0)
[2048x32]

PLM Unit (B1)
[2048x32]

Private Local
MemoryAccelerator Logic

Load

Compute

Store

Configuration Registers

DM
A

C
on

tro
lle

r

Ctrl A0

Ctrl B0

Ctrl B1

sync

sync

Controller for fixed-latency
memory accesses

B0-2

B0-1

B0-1
B0-2

B0-3
B0-4

Alternative implementations
for the same PLM unit

one 2048x32
SRAM

two 1024x32
SRAMs

four 512x32
SRAMs

debayer

PLM Unit (C0)
[8192x64]

PLM Unit (D0)
[8192x64]

Private Local
MemoryAccelerator Logic

Load

Compute

Store

Configuration Registers

DM
A

C
on

tro
lle

r

Ctrl C0

Ctrl D0

sync

sync

fft2d

RTL Architecture for Irregular Applications

Internal memory bus where the pointer is dynamically resolved
• Daisy-chain architecture with possibility of accessing the external memory

Heterogeneous SoC
Hardware Module

local
memory

local
memory

Controller + Datapath

Hardware Module

local
memory

M
em

or
y

In
te

rf
ac

e

D
RA

M
 C

tr
l

C
on

f.
Re

gs
M

em
or

y
In

te
rf

ac
e

CPU

Sy
st

em
 In

te
rc

on
ne

ct

DRAM

Pilato et al.
CODES 2011

size
data_i

addr
r/w

DP1

m_op

DP2

m_op

size
data_i

addr
r/w

data_o

SPM1

m_op

SPM2

m_op

CS CS

Multi-port Memories are not for Free

Distributed registers (e.g. flip-flops)
• Many ports at the cost of more area
• Good for small to medium data structures

Memory Intellectual Property (IP) blocks
• Area-efficient macro blocks provided by the

technology vendors
• SRAMs for CMOS and BRAMs for FPGA

• Good for medium to large arrays
• Limited number of ports (usually no more than two!)

1024x32 array in an industrial
CMOS 32nm technology

Distributed	registers
145,707.5 um2

Memory	IP block
35,106.6 um2

(4x	area	reduction)

Multi-bank
architectures based on

memory IPs

Mnemosyne

Prototype CAD tool that implements a complete system-level
methodology for PLM customization

Data	structures,	access	
patterns,	…

HLS	optimizations,	number	of	
memory	interfaces,	…

Memory	IPs,	multi-bank	
architectures,	…

SystemC

SystemC +	RTL

RTL

Designer

HLS	tool Optimizations	to	reduce	memory	cost
Flexiblememory controller	to	coordinate	

memory	accesses

Data	Access	
Requirements

Memory
Library

Mnemosyn
e

PLM	architecture	
(RTL)

Automatic	Generation

Data	
Structures

Mnemosyne

Performance optimization: HLS defines how the accelerator logic accesses the
data structures (e.g. number of parallel accesses)

Cost optimization: Mnemosyne defines the best memory architecture able to
guarantee the desired performance (e.g. number of banks, data allocation)

Reuse What is not Used

Generally we can use one PLM unit (eventually composed of many
banks) for each data structure

“Two data structures are compatible if they can be
allocated to the same PLM unit (memory IPs)”

A common case: accelerators never executed at the same time
• Possible only at the system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse the same memory IPs
for several data structures

Optimization only at the System-Level

Accelerator(s) memory subsystem is defined during SoC integration
• Possibility for more optimizations

Logic
PLM

IP DESIGN

Logic
PLM

IP DESIGN

SOC INTEGRATION

Accelerator
Design
(SystemC)

Algorithm
Design (C/C++)

Accelerator
Design
(SystemC)

Algorithm
Design (C/C++)

Accelerator
Design
(SystemC)

Algorithm
Design (C/C++)

Logic
IP DESIGN

Accelerator
Design
(SystemC)

Algorithm
Design (C/C++)

SOC INTEGRATION

Memory Subsystem Design

Logic
IP DESIGN

Mem
Reqs

Mem
Reqs

Traditional Approach Our Approach

Optimization of Multiple Accelerators

HLS and DSE

Accelerator Design1
(SystemC)

Accelerator Logic1
(Verilog)

Memory
Requirements1 HLS and DSE

Accelerator Designk
(SystemC)

Accelerator Logick
(Verilog)

Memory
Requirementsk

Compatibility
Information Memory

IPs

Technology-unaware
Transformations1

Local Tech-aware
Transformations1

Memory
Subsystem
(Verilog)

Global Technology-aware Transformations

1 1

2

3

4

MNEMOSYNE Technology-unaware
Transformationsk

2

Local Tech-aware
Transformationsk

3

Generation of RTL Architecture
5

…	

Pilato et al.
TCAD 2017

Memory Compatibility Graph

Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data

footprint (after data allocation)
• Each edge represents compatibility between the two data structures

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the
data structures are compatible and
can use the same memory IPs

b) Memory-interface compatibility:
the ports are never accessed at
the same time and the data
structures can stay in the same
memory IP

How to Determine the Memory Subsystem

Memory	Cost	Minimization

To	determine	how	to	partition	the	MCG	such	that	the	total	memory	cost	is	minimized

Clique	Characterization

To	determine	the	memory	architecture	of	all	cliques	and	their	memory	cost

Clique	Enumeration

To	define	the	list	of	admissible	cliques	in	the	Memory	Compatibility	Graph	(MCG)

PLM Controller Generation

A lightweight PLM controller is created for each clique based on the
bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom	logic with	negligible	overhead,	especially	when	
the	number	of	banks	and	their	size	is	a	power	of	two

0x0 0x1

0x0

0x1

0x0

0x1

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

0x00
0x01
0x02
0x03

…

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

C
E
	

A
	

Q
	

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

…	

1 0010 1

100101

Impact of Optimizations

0

0.2

0.4

0.6

0.8

1.0
Compatibility Coloring Final

N
or

m
al

iz
ed

 a
re

a
of

 th
e

PL
M

Sort
FFT1D

FFT2D
Debayer

Lucas K
anade

Change Detection

Interpolation 1

Interpolation 2

Backprojection
Disparity PCA

RBM SRR

0

0.2

0.4

0.6

0.8

1.0
Compatibility Coloring Final

N
or

m
al

iz
ed

 a
re

a
of

 th
e

PL
M

Sort
FFT1D

FFT2D
Debayer

Lucas K
anade

Change Detection

Interpolation 1

Interpolation 2

Backprojection
Disparity PCA

RBM SRR

Industrial 32nm CMOS
technology
• Memory library with 18

SRAMs

Xilinx Virtex-7 FPGA
• Memory library with 6

BRAM configurations

Multiple Accelerators in Time Multiplexing

We created four realistic scenarios:
• Required: Sort, FFT1D, FFT2D
• WAMI: Debayer, Lucas Kanade, Change Detection
• SAR: Interpolation 1, Interpolation 2, Backprojection
• Cortex: Disparity, SRR, PCA, RBM

Bench.
Data	Structures CMOS FPGA

(#) (KB) #Ctrl. (KB) Diff (%) #Ctrl. (KB) Diff	(%)

Required 13 192.00 4 140.00 -32.05 4 192.00 -29.17

WAMI 25 178.21 8 131.00 -43.93 8 212.00 -57.55

SAR 21 211.10 8 100.00 -55.07 8 216.00 -53.07

Cortex 54 404.23 32 653.50 -36.42 32 690.00 -46.67

Accelerators Executing Concurrently

Balancing communication and computation is crucial for
performance optimization
• Optimizing microarchitecture reduces the computation latency

• Combination of HLS transformations and PLM customization

• Input and output phases interact with the rest of the system
• Backpressure due to congestion may increase the latency

out[1]	=	
kernel
(in[1])

out[2]	=	
kernel
(in[2])

out[3]	=	
kernel
(in[3])

…

1 2 3

1 2 …

clock

Input

Computation

Output

4
out[1]	=	
kernel
(in[1])

out[2]	=	
kernel
(in[2])

out[3]	=	
kernel
(in[3])

…

1 2 3

1 2 …

clock

Input

Computation

Output

4

Reduce the congestion or exploit the congestion
to optimize the execution at the system level

Optimizing the System Execution

Reduce congestion: Smart data allocation on multiple controllers
• Partition the data set across multiple memory spaces (1-4 MB pages) with a

custom Linux module
• Configure hardware TLB with virtual-to-physical addresses
• DMA controller generates transactions to the proper memory controller

Exploit congestion: dynamic power management with DVFS
• Vary the execution mode of the accelerators (voltage/frequency) based on the

workload
• Only requires local probes to determine when an accelerator is stalling after a

data request

Mantovani et al.
CASES 2016

Mantovani et al.
DAC 2016

Accelerators are Becoming More and More
Complex
Complex accelerators with large PLMs are becoming an important
source of power consumption
• Leakage is becoming more and more critical (45nm and below)

• almost 70% of total power consumption
• SRAM leakage contributes for more than 50% to the total leakage
• can be reduced by more than 70% by reducing supply voltage
• Dual-rail SRAMs not sufficiently exploited

Fine-grained power management is gaining a lot of attention
• Number of accelerators is usually larger than the number of memory controllers

(communication bottleneck)

During congestion we can reduce the
power consumption of the accelerators

How to Dynamically Control the Banks?

• PLM units are not entirely used in all configurations (scenarios)
• Scenario-based optimization: partitioning of the banks to maximize the

banks that are power gated

• Workload-based optimization: dynamic control of the logic/cell power gating
based on the execution phases (e.g., during congestion)

A0 A1

A0 → B0 A1 → B1 A0 → B0

A0 A1

B0 B1

Load

Compute

Store

B0

B1

3 1

1

1 1

1

2

(b)

(c)

B0-1

B0-1
B0-2

S1

S2

B0-1

B0-1
B0-2

SRAM bank can be
power gated when

unused

(a)
2,048x32 SRAMs 1,024x32 SRAMs

SRAM banks are
always active even
when partially used

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

S1

S2

(d)

System congestion can delay the data transfers

2

3 22 1 2 3

Unused banks are
always power gated

DarkMem Architecture

• Each PLM unit is extended with power-control logic
• SMC identifies the current execution scenario
• OMC manages the SRAM operating modes based on signals from the

accelerator logic

DarkMem Unit (A0)

DarkMem Unit (B0)

DarkMem Unit (B1)

Private Local MemoryAccelerator Logic

Load

Compute

Store

IVR

IVR

IVR

Configuration Registers

DM
A

C
on

tro
lle

r

Ctrl A0

Ctrl B0

Ctrl B1

Ctrl (B0) DarkMem Unit (B0)

SMCOMC

SRAM (b0)

SRAM (b1)

Configuration Registers

0PGL

0PGM

0PGL

0PGM

OR

OR

OR

OR

Power Ctrl
B0

Data Ctrl
B0

IVR

sync

• Fine-grained control of each SRAM
power pin (PGL and PGM)

Pilato and Carloni
ASPDAC 2018

Determining the Bank Configuration

• ILP formulation to determine the number and type of banks for each
PLM unit, based on:

• Data to be stored (bitwidth and number of words) in each scenario
• List of scenarios and frequency of execution
• List of available memory IPs and corresponding active/gated static power

𝑃𝐿𝑀$%&%'(= 	+ 𝑃𝐿𝑀$%&%'(
$, 𝑓𝑟𝑒𝑞 𝑠

�

$∈4

• Used to configure the SMC modules to generate the proper masks

Experimental Results

• We improved the design of eight accelerators
• SystemC specification extended with DarkMem API
• PLM generator extended with generation of the DarkMem units

• Industrial 32nm CMOS technology at 1GHz
• Cadence C-to-Silicon for HLS

• Memory library with 18 dual-rail SRAMs
• Customized to have different power-gating characteristics

Impact of Single Optimizations

• Reference designs: with no optimizations

• Performance overhead is minimal (less than 1%)

Scenario-based STD Library LP Library ULP Library

-45%
-30% Reference

0

0.2

0.4

0.6

0.8

1.0

FFT-2D
Debayer

Lucas Kan.

Change Det.

Disparity PCA
SRR

RBM Avg.

Combined Results

• SRAM static power can be reduced up to 60%
• In average, the total power is reduced by around 18%

-59%

Reference
-18%

SRAM static power Total power

0

0.2

0.4

0.6

0.8

1.0

FFT-2D
Debayer

Lucas Kan.

Change Det.

Disparity PCA
SRR

RBM Avg.

Fine-grained DVFS in Heterogeneous SoCs

Modern technology for integrated voltage regulators (IVRs) enables
fine-grained DVFS
• Fast response (sub-µs) to dynamic supply

voltage scaling
• Possibility to create NoC-based SoCs

where each tile has its own voltage
domain

• 3D-Stacked Switched-Inductor
Voltage Regulators

How many voltage domains?
How to aggregate accelerators?
How to change operating point? Tien et al.

VLSI 2015

Enabling Pre-Silicon Evaluation of
Fine-Grained DVFS
Design time modeling
• Accurate power modeling of accelerators
• Actual frequency scaling implementation

• Up to 12 independent clock regions dedicated
to accelerators on each FPGA

• Configurable transient (~10s cycles)
• Configurable hardware policies and

software supervisor

Runtime monitoring
• Distributed system and accelerator

customized probes

I/O

CPU

ACC

ACC

ACC

ACC

ACC

DDR

ACC

DVFS	probe
Acc.	probe

D0

D1

D3

D2

Heterogeneous SoC with Fine-grained DVFS

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

pn0 pn1 pn2 pn3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pn0 pn1 pn2 pn3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pt4 pt5 pt6 pt7 pt8 pt9 pt10 pt11 pt12 pt13 pt14

1 Domain
2 Domains
5 Domains

10 Domains
+budget

PN

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

60%

70%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

pb15 pb16 pb17 pb18 pb19 pb20 pb21 pb22 pb23 pb24 pb25

PB

Normalized	Execution	Time

Normalized	Energy	Dissipation

Up to 85% energy savings with a
performance penalty of less than 10%

10 accelerators, 2 DDR controllers, 1
processor and 1 I/O tile for monitoring

Conclusions

Specialized accelerators are key elements in SoC design
• High performance and energy efficiency
• (Quite) mature HLS tools can support the generation of complex systems

PLM customization is crucial to achieve high performance
• Enables more hardware parallelism
• High static/dynamic power consumption to be addressed with specific solutions

With Mnemosyne and fine-grained power management:
• We create complex heterogeneous SoCs with optimized accelerator memory

subsystems (up to 55% of area savings, and 60% of power saving)
• We reduce energy consumption (>80%) with almost no performance overhead

(<10%)

What’s Next?

Latency-insensitive memories can relax the conflict-free
requirements and enable additional memory optimizations
• Memory subsystem can be designed in parallel to accelerators

• physically-aware optimizations
• trading-off performance overhead and area savings

Analysis of emerging memory technologies
• How to design and program systems with a combination of different memory

technologies?

References
• C. Pilato, F. Ferrandi, D. Sciuto, “A design methodology to implement memory accesses in High-Level

Synthesis”, CODES+ISSS 2011
• E. Cota, P. Mantovani, G. Di Guglielmo, L.P. Carloni, “An Analysis of Accelerator Coupling in Heterogeneous

Architectures”, DAC 2015
• P. Mantovani, G. Di Guglielmo, L.P. Carloni, “High-level synthesis of accelerators in embedded scalable

platforms”, ASPDAC 2016
• R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J.

Anderson, K. Bertels, “A Survey and Evaluation of FPGA High-Level Synthesis Tools”, TCAD 2016
• P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo, L.P. Carloni, “Handling large data sets for high-performance

embedded applications in heterogeneous systems-on-chip”, CASES 2016
• P. Mantovani, E. Cota, K. Tien, C. Pilato, G. Di Guglielmo, K.L. Shepard, L.P. Carloni, “An FPGA-based

Infrastructure for Fine-grained DVFS Analysis in High-performance Embedded Systems”, DAC 2016
• C. Pilato, P. Mantovani, G. Di Guglielmo, L.P. Carloni, “System-Level Optimization of Accelerator Local Memory

for Heterogeneous Systems-on-Chip”, TCAD 2017
• C. Pilato, L.P. Carloni, “DarkMem: Fine-Grained Power Management of Local Memories for Accelerators in

Embedded Systems”, ASPDAC 2018

