

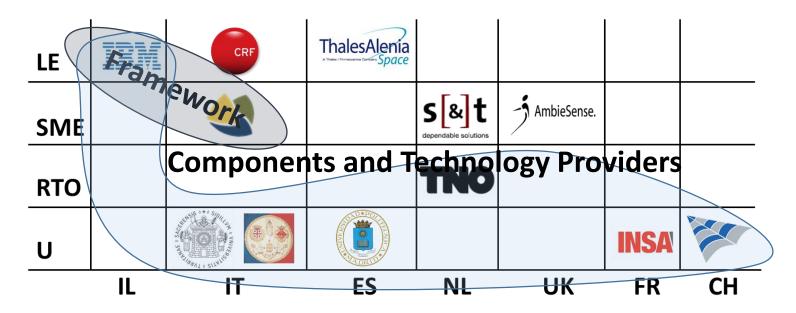
CERBERO

Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid envirOnments

Michael Masin (IBM Research - Haifa, michaelm@il.ibm.com)

Agenda

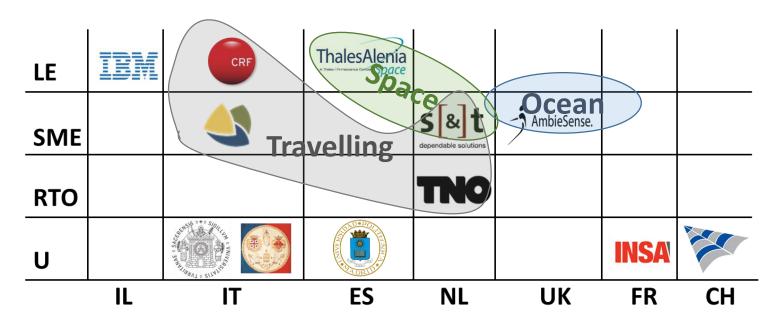
- CERBERO consortium in a glance
- Background on Cyber Physical Systems (CPS) and Cognitive CPS
- CERBERO goal (WHAT)
- CERBERO use cases (WHY)
- CERBERO tool chain (HOW)
- Summary of CERBERO approach
- Next steps


Consortium: 12 partners from 7 countries

LE	IBM	CRF	ThalesAlenia				
SME		5		S& t	AmbieSense.		
RTO				TNO			
U		S S S S S S S S S S S S S S S S S S S				INSA	
	IL	IT	ES	NL	UK	FR	CH

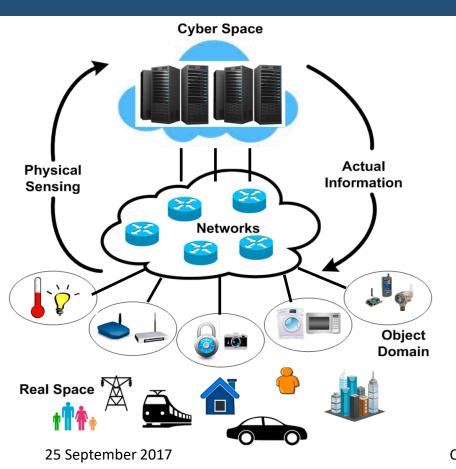
Started: January 1, 2017

Duration: 36 months


To build Cognitive Cyber Physical Systems

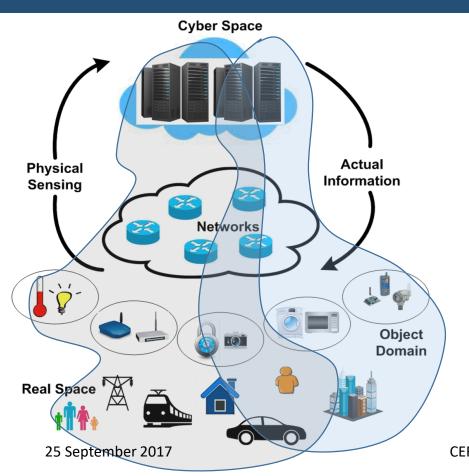
Started: January 1, 2017

Duration: 36 months


and evaluate by 3 use cases

Started: January 1, 2017

Duration: 36 months


Cyber Physical Systems (CPS)

- Autonomous cyber systems communicating with physical environment
- Examples
 - embedded controllers
 - home appliances and cars communicated with cloud
 - industrial controllers, SCADA
- Usually small System of Systems (SoS) or star topology of similar devices connected to cloud
- Main challenge: Combine Cyber and Physical Models for design, analysis and operation
- Established technologies for design and operation

CERBERO

Cognitive CPS

- Reconfigurable CPS that understand operational in real time, especially with humans or teams of machines and humans
- Examples
 - mars rover
 - autonomous vehicles
 - autonomous vessel fleets
 - self healing appliance
 - self adaptive manufacturing
- Usually large SoS and fog topology between hybrid devices
- Big challenge: Reconfigurable "Smart" Cyber Systems in Uncertain Hybrid Environments
- **Emerging** design and operation methodologies

CERBERO Goal

- Integrated model-based framework for multi-objective design, fast prototyping and continuous DevOps of Cognitive Cyber Physical Systems
 - From (User Requirements)
 - SoS and System level
 - Application / Service level
 - Real Time Manager level
 - To Real Time Software and Hardware implementation

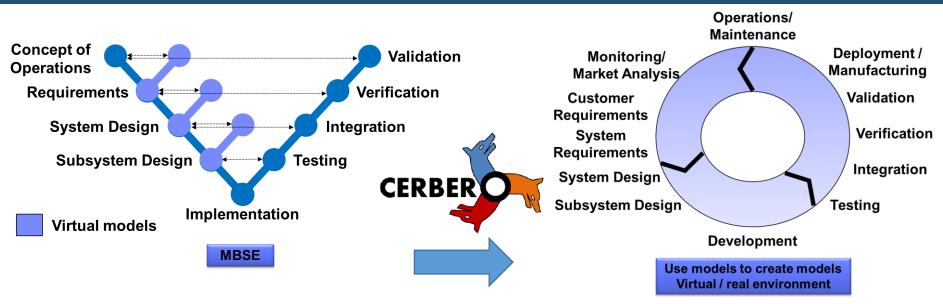
CERBERO Approach

BEYOND SEPARATION OF CONCERNS:

- Modeling, optimization and analysis of <u>hybrid systems</u> with *continuous* physical and human behavior and *discrete* cyber models of computation and communication
- Many <u>layers of abstraction</u> with unique models and tools

BEYOND REQUIREMENTS ANALYSIS:

- High level functional and <u>non-functional</u> (i.e. security, sustainability, usability) requirements analysis and <u>continuous verification</u>
- Generalization of requirements by means of common Key Performance Indicators


BEYOND SCENARIO AWARENESS:

- Methodology for designing <u>cognitive</u> system architectures
- Autonomous and sensor-based <u>hardware/software reconfiguration</u>
- <u>Multi-layer runtime adaptation</u> approach by means of a high-level self-adaptation engine

BEYOND TOOL INTEGRATION:

- <u>Semantic integration</u> of different design automation components
- Incremental <u>prototyping</u> and <u>verification</u>, with system-in-the-loop co-simulation capabilities

CERBERO Expected Impact

- Collection of partially integrated toolchains and methodologies for CPS that
 - collect data usage
 - apply predefined control
 - find shortest path navigation

- Integrated modelling and design environment for Cognitive CPS with
 - self adaptation and self healing capabilities
 - adaptive control based on global objectives
 - congestion, accident (and other risks) avoidance

25 September 2017

CERBERO

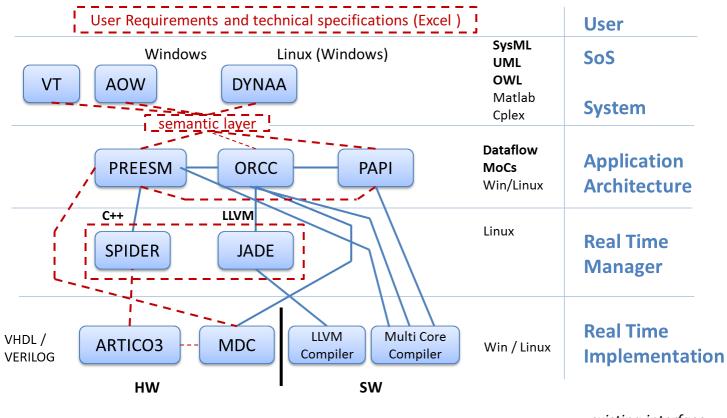
CERBERO Use Cases

Self-Healing System for Planetary Exploration:

- **Self-healing** and **self-adaptive** embedded CPS processing systems capable of operating in such a critical environment
- Robotic arm and motors control for space vessel

Ocean Monitoring:

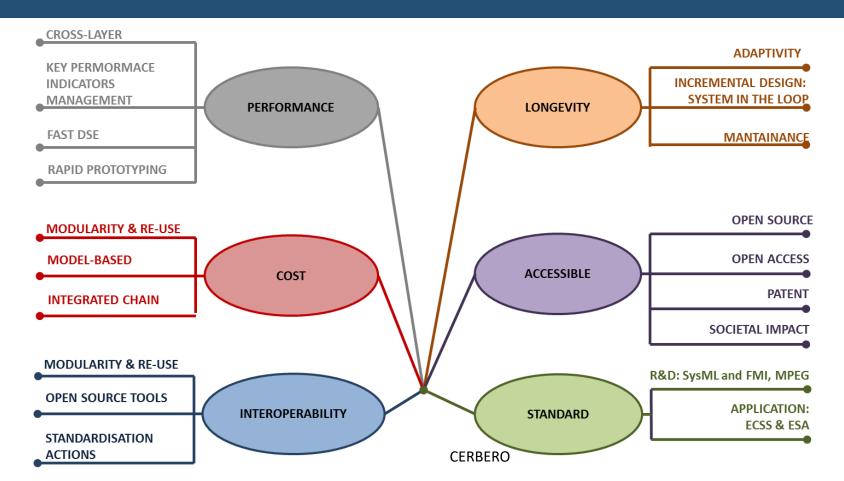
- Smart video-sensing unmanned vehicles with immersive environmental monitoring capabilities
- Individual and fleet self-operation, power management and navigation
- Data analysis and information fusion to enable smart adaptation strategies to address rapidly changing environment conditions in order to obtain or maintain positions on sea and other missions objectives



Smart Travelling for Electric Vehicle:

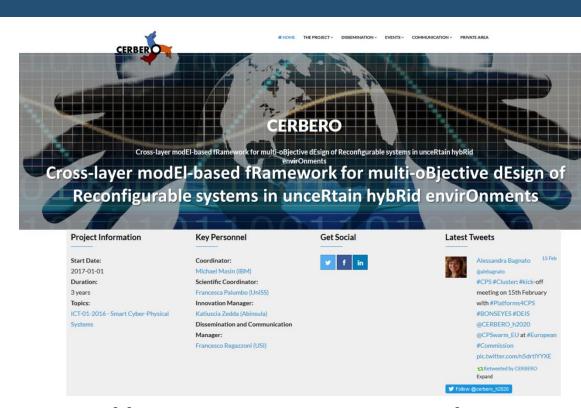
- Virtual Reality simulated environment
- Highly networked scenario composed of heterogeneous concurrent subsystems
 - Electric Vehicle, Person possessing a only partially observable personal agenda, the Smart Energy Grid and the Smart Mobility that provides mobility-aware functionality (e.g. parking places, charge points, smart home, smart office, etc.)
- High degree of autonomy and support for adaptability, plus modelling and managing the
 distributed communication layers.

CERBERO Toolchain v0.1


Current status and next steps

- Elaboration of use cases
- Requirements for the tools and integration platform

• Initial methodology, integration framework, and sub-toolchains


- Review in Brussels on October 24
- General Assembly in Haifa, Israel

CERBERO Drivers

Thank you for your attention!

Any questions?

http://www.cerbero-h2020.eu/