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Parallelizing Compiler”

Power ∝ Frequency * Voltage2

(Voltage ∝ Frequency)
Power ∝ Frequency3

If Frequency is reduced to 1/4
(Ex. 4GHz1GHz),

Power is reduced to 1/64 and 
Performance falls down to 1/4 .
<Multicores>
If 8cores are integrated on a chip,
Power is still 1/8 and 
Performance becomes 2 times.
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Power consumption is one of the biggest problems for performance 
scaling from smartphones to cloud servers and supercomputers 
(“K” more than 10MW) .



Earthquake wave propagation simulation GMS developed by National 
Research Institute for Earth Science and Disaster Resilience (NIED)

 Automatic parallelizing compiler available on the market gave us no speedup against execution time on 1 core on 64 cores
 Execution time with 128 cores was slower than 1 core (0.9 times speedup)

 Advanced OSCAR parallelizing compiler gave us 211 times speedup with 128cores against execution time with 1 core 
using commercial compiler
 OSCAR compiler gave us 2.1 times speedup on 1 core against commercial compiler by global cache optimization
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Parallel Soft is important for scalable 
performance of multicore
Just more cores don’t give us speedup
Development cost and period of parallel software are 
getting a bottleneck of development of embedded 
systems, eg. IoT, Automobile

Fjitsu M9000 SPARC
Multicore Server

OSCAR 
Compiler gives 
us 211 times 
speedup with 
128 cores

Commercial 
compiler gives 
us 0.9 times 
speedup with 
128 cores (slow-
downed against 
1 core)
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Trend of Peak Performances of Supercomputers 

2020-22 米中欧日
ExaFLOPS計画
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京,2011.6&11, 11PFLOPS, 11.3MW

Tianhe-2, 2013.06, 55PFLOPS, 17.8MW

Titan,2012.11,27PFLOPS,8.2MW

Sequoia,2012.06, 20PFLOPS, 7.9MW

１Z
Aurora,2018,180PFLOPS,13MW,Argonne National Lab., Intel & Cray

Sunway TaihuLight, 2016.06, 93PFLOPS, 15.4MW



Power Reduction of MPEG2 Decoding to 1/4 
on 8 Core Homogeneous Multicore RP-2 

by OSCAR Parallelizing Compiler

Avg. Power
5.73 [W]

Avg. Power
1.52 [W]

73.5% Power Reduction
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MPEG2 Decoding with 8 CPU cores
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Renesas-Hitachi-Waseda Low Power 8 core RP2   
Developed in 2007 in METI/NEDO project

Process 
Technology

90nm, 8-layer, triple-
Vth, CMOS

Chip Size 104.8mm2  

(10.61mm x 9.88mm)
CPU Core 
Size

6.6mm2           

(3.36mm x 1.96mm)
Supply 
Voltage

1.0V–1.4V (internal), 
1.8/3.3V (I/O)

Power 
Domains

17 (8 CPUs,               
8 URAMs, common)
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IEEE ISSCC08: Paper No. 4.5,   M.ITO, … and  H. Kasahara, 
“An 8640 MIPS SoC with Independent Power-off Control of 8 
CPUs and 8 RAMs by an Automatic Parallelizing Compiler”
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Solar Powered
Smart phones

Cameras

Robots

Cool desktop servers

Industry-government-academia collaboration in R&D
and target practical applications

On-board vehicle technology 
(navigation systems, integrated 
controllers, infrastructure 
coordination)

Consumer electronic
Internet TV/DVD

Non-fan, cool, quiet servers 
designed for server

Green cloud servers

Stock trading

Operation/recharging
by solar cells

OSCAR many-core chip

Green 
supercomputers
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OSCAR
Many-core

Chip
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Waseda University :R&D
Many-core system technologies with

ultra-low power consumption
Super real-time disaster 
simulation (tectonic shifts, 
tsunami), tornado, flood,
fire spreading)

National Institute of 
Radiological Sciences

Protect lives

Protect  environment
For smart life

Camcorders

Intelligent home 
appliances

Supercomputers 
and servers

Industry

Capsule inner 
cameras

Compiler, API

Medical servers

Heavy particle radiation planning, 
cerebral infarction)



8.9times speedup by 12 processors
Intel Xeon X5670 2.93GHz 12 
core SMP (Hitachi HA8000)

55 times speedup by 64 processors
IBM Power 7 64 core SMP 

(Hitachi SR16000)

National Institute of 
Radiological Sciences 
(NIRS)

Cancer Treatment 
Carbon Ion Radiotherapy

(Previous best was 2.5 times speedup on 16 processors with hand optimization) 



To improve effective performance, cost-performance 
and software productivity and reduce power

OSCAR Parallelizing Compiler

Multigrain Parallelization
coarse-grain parallelism among loops 
and subroutines, near fine grain 
parallelism among statements in 
addition to loop parallelism

Data Localization
Automatic data management for
distributed shared memory, cache
and local memory

Data Transfer Overlapping
Data transfer overlapping using Data
Transfer Controllers (DMAs)

Power Reduction
Reduction of consumed power by
compiler control DVFS and Power
gating with hardware supports.
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Performance of OSCAR Compiler on IBM p6 595 Power6 (4.2GHz) 
based 32-core SMP Server

Compile Option:
(*1) Sequential: -O3 –qarch=pwr6, XLF: -O3 –qarch=pwr6 –qsmp=auto, OSCAR: -O3 –qarch=pwr6 –qsmp=noauto
(*2) Sequential: -O5 -q64 –qarch=pwr6, XLF: -O5 –q64 –qarch=pwr6 –qsmp=auto, OSCAR: -O5 –q64 –qarch=pwr6 –qsmp=noauto
(Others) Sequential: -O5 –qarch=pwr6, XLF: -O5 –qarch=pwr6 –qsmp=auto, OSCAR: -O5 –qarch=pwr6 –qsmp=noauto

AIX 
Ver.12.1
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Generation of Coarse Grain Tasks
Macro-tasks (MTs)
 Block of Pseudo Assignments (BPA): Basic Block (BB)
 Repetition Block (RB) : natural loop
 Subroutine Block (SB): subroutine

Program

BPA

RB

SB

Near fine grain parallelization

Loop level parallelization
Near fine grain of loop body
Coarse grain
parallelization
Coarse grain
parallelization

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB
BPA
RB
SB
BPA
RB
SB
BPA
RB
SB

1st. Layer 2nd. Layer 3rd. LayerTotal
System
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Earliest Executable Condition Analysis for Coarse 
Grain Tasks (Macro-tasks)

A Macro Flow Graph
A Macro Task 
Graph 
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V1.0 © 2014, IEEE All rights reserved

PRIORITY DETERMINATION 
IN DYNAMIC CP METHOD

14

60*0.80+100*0.20=68



V1.0 © 2014, IEEE All rights reserved

Earliest Executable Conditions
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EEC: Control dependence + Data Dependence 
Control dependences show executions of  MTs are decided
Data dependences show data accessed by MTs are ready

MT2 may start  
execution after 
MT1 branches to 
MT2 and MT1 
finish execution. 

MT3 may start execution 
after MT1 branches to MT3. 

MT6 may start execution 
after MT3 finish execution or 
MT2 branches to MT4. 



Automatic processor assignment in 103.su2cor

• Using 14 processors
Coarse grain parallelization within DO400
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MTG of Su2cor-LOOPS-DO400

DOALL Sequential LOOP BBSB

 Coarse grain parallelism PARA_ALD = 4.3
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Data-Localization: Loop Aligned Decomposition
• Decompose multiple loop (Doall and Seq) into CARs and LRs 

considering inter-loop data dependence.
– Most data in LR can be passed through LM.
– LR: Localizable Region, CAR: Commonly Accessed Region

DO I=69,101DO I=67,68DO I=36,66DO I=34,35DO I=1,33

DO I=1,33

DO I=2,34

DO I=68,100

DO I=67,67

DO I=35,66

DO I=34,34

DO I=68,100DO I=35,67

LR CAR CARLR LR

C RB2(Doseq)
DO I=1,100

B(I)=B(I-1)
+A(I)+A(I+1)

ENDDO

C RB1(Doall)
DO I=1,101
A(I)=2*I

ENDDO

RB3(Doall)
DO I=2,100

C(I)=B(I)+B(I-1)
ENDDO

C

18



Inter-loop data dependence analysis in TLG

• Define exit-RB in TLG                     
as Standard-Loop

• Find iterations on which                 
a iteration of Standard-Loop is   
data dependent
– e.g. Kth of RB3 is data-dep     

on K-1th,Kth of RB2,
on K-1th,Kth,K+1th of RB1
indirectly.

C RB2(Doseq)
DO I=1,100
B(I)=B(I-1)

+A(I)+A(I+1)
ENDDO

C RB1(Doall)
DO I=1,101
A(I)=2*I

ENDDO

C RB3(Doall)
DO I=2,100
C(I)=B(I)+B(I-1)

ENDDO

Example of TLG

I(RB1)

I(RB2)

I(RB3)
K

K

K K+1K-1

K-1
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Decomposition of RBs in TLG

• Decompose GCIR into DGCIRp(1≦p≦n)
– n: (multiple) num of PCs,  DGCIR: Decomposed GCIR 

• Generate CAR on which DGCIRp&DGCIRp+1 are data-dep.
• Generate LR on which DGCIRp is data-dep.

GCIR
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I(RB3)

I(RB1)
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Data Localization

MTG MTG after Division A schedule for 
two processors

21



An Example of Data Localization for Spec95 Swim
DO 200 J=1,N
DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+
1    TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J)
2       +CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))

VNEW(I,J+1) = VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+Z(I,J+1))
1       *(CU(I+1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J))
2       -TDTSDY*(H(I,J+1)-H(I,J))

PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J))
1       -TDTSDY*(CV(I,J+1)-CV(I,J))

200 CONTINUE

DO 300 J=1,N
DO 300 I=1,M

UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))

300  CONTINUE

DO 210 J=1,N
UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)

210 CONTINUE

UN
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U PV

0 1 2 3 4MB
cache size

(a) An example of target loop group for data localization

(b) Image of alignment of arrays on 
cache accessed by target loops

Cache line conflicts occurs 
among arrays which share the 
same location on cache

DO 200 J=1,N
DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+
1    TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J)
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200 CONTINUE
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POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))

300  CONTINUE
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(a) An example of target loop group for data localization

(b) Image of alignment of arrays on 
cache accessed by target loops

Cache line conflicts occurs 
among arrays which share the 
same location on cache
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PARAMETER (N1=513, N2=513)

COMMON  U(N1,N2), V(N1,N2), P(N1,N2),
*        UNEW(N1,N2), VNEW(N1,N2),
1        PNEW(N1,N2), UOLD(N1,N2),
*        VOLD(N1,N2), POLD(N1,N2),
2        CU(N1,N2), CV(N1,N2),
*        Z(N1,N2), H(N1,N2)

Data Layout for Removing Line Conflict Misses 
by Array Dimension Padding

Declaration part of arrays in spec95 swim

PARAMETER (N1=513, N2=544)

COMMON  U(N1,N2), V(N1,N2), P(N1,N2),
*        UNEW(N1,N2), VNEW(N1,N2),
1        PNEW(N1,N2), UOLD(N1,N2),
*        VOLD(N1,N2), POLD(N1,N2),
2        CU(N1,N2), CV(N1,N2),
*        Z(N1,N2), H(N1,N2)

before padding after padding

Box: Access range of DLG0

4MB 4MB

padding
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Statement Level Near  Fine Grain Task
<<LU Decomposition>>
1)  u12 = a12/l11
2)  u24 = a24/l22
3)  u34 = a34/l33
4)  l54 = -l52 * u24
5)  u45 = a45/l44
6)  l55 = u55 - l54 * u45

<<Forward Substitution>>
7)  y1 = b1 / l11
8)  y2 = b2 / l22
9)  b5 = b5 - l52 * y2
10) y3 = b3 / l33
11) y4 = b4 / l44
12) b5 = b5 - l54 * y4
13) y5 = b5 / l55

<<Backward Substitution>>
14) x4 = y4 - u45 * y5
15) x3 = y3 - u34 * x4
16) x2 = y2 - u24 * x4
17) x1 = y1 - u12 * x2
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Task Graph for FPPPP
Statement level near fine grain parallelism

25



Elimination of Redundant Synchronization for 
Shared Data on Centralized Shared Memory 

after Static Task Scheduling

FS

FC

FC

FC

E

A

D

B

C

PE3PE2PE1

FC

FC
FC

FC

FS

FS

FS
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Flag set

Flag check
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Generated Parallel Machine Code for Near 
Fine Grain Parallel Processing

FC

A

B

C

PE2PE1

FS

PE1
; ---- Task A ----
; Task Body

FADD R23, R19, R21
; ---- Task B ----
; Flag Check : Task C
L18:

LDR R28, [R14, 0]
CMP R28, R0
JNE  L18

; Data Receive
LDR R29, [R14, 1]

; Task Body
FMLT R24, R23, R29

PE2
; ---- Task C ----
; Task Body

FMLT R27, R28, R29
FSUB R29, R19, R27

; Data Transfer
STR [R14, 1], R29

; Flag Set
STR [R14, 0], R0

27



【W-CDMA Base Band Communication】
Near Fine Grain Parallel Processing of EAICH Detection Program on RP2 

Multicore with 4 SH4A cores

28

 Hadamard transform often 
used in the signal processing

 Parallel Processing Method
– Near fine grain parallel 

processing among 
statements

– Static Scheduling
Special purpose 
Hardware
(250MHz): 1.74μs

1.62 times speedup for 2cores, 3.45 times speedup for 4 cores for EAICH  on RP2.



Generated Multigrain Parallelized  Code 
(The nested coarse grain task parallelization  is realized by only OpenMP 

“section”, “Flush” and “Critical” directives.)

Centralized 
scheduling 
code

Distributed 
scheduling 
code

T0 T1 T2 T3

Thread 
group0

MT1_1

SYNC SEND
MT1_2

SYNC RECV

T4 T5 T6 T7

1_4_2

1_4_4

1_4_3

1_4_1

1_4_2

1_4_4

1_4_3

1_4_1
1_3_2

1_3_4

1_3_3

1_3_1

1_3_6

1_3_5

1_3_2

1_3_4

1_3_3

1_3_1

1_3_6

1_3_5

1_3_2

1_3_4

1_3_3

1_3_1

1_3_6

1_3_5

SECTIONS
SECTION SECTION

END SECTIONS

Thread 
group1

MT1_1

MT1_3
SB

MT1_2
DOALL

MT1_4
RB

1st layer

2nd layer

1_3_1

1_3_2 1_3_3

1_3_5

1_3_4

1_3_6

1_4_21_4_3 1_4_4

1_4_1

MT1-4

MT1-3

2nd layer 29



Code Generation Using OpenMP
• Compiler generates a parallelized program using OpenMP API
• One time single level thread generation

– Threads are forked only once at the beginning of a program by 
OpenMP “PARALLEL SECTIONS” directive

– Forked threads join only once at the end of program

• Compiler generates codes for each threads using static or 
dynamic scheduling schemes

• Extension of OpenMP for hierarchical processing is not 
required
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Low Power 
Heterogeneous 
Multicore Code 

Generation
API

Analyzer
(Available 

from 
Waseda)

Existing 
sequential 
compiler

Multicore Program Development Using OSCAR API V2.0
Sequential Application

Program in Fortran  or C
(Consumer Electronics, Automobiles, 
Medical, Scientific computation, etc.)

Low Power 
Homogeneous 
Multicore Code 

Generation
API

Analyzer
Existing

sequential 
compiler

Proc0

Thread 0

Code  with 
directives

Waseda OSCAR
Parallelizing Compiler

Coarse grain task 
parallelization
Data Localization
DMAC data transfer 
Power reduction  using DVFS, 
Clock/ Power gating

Proc1

Thread 1

Code  with 
directives

Parallelized 
API F or C 
program 

OSCAR API for Homogeneous and/or 
Heterogeneous Multicores and manycores
Directives for thread generation, memory, 

data transfer using DMA, power 
managements

Generation of 
parallel  machine 

codes using 
sequential 
compilers 

E
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OSCAR: Optimally Scheduled Advanced Multiprocessor
API： Application Program Interface

Homegeneous
Multicore s 

from Vendor A
(SMP servers) 

Server Code 
Generation
OpenMP 
Compiler

Shred memory 
servers

Heterogeneous
Multicores

from Vendor B 

Hitachi, Renesas, NEC, 
Fujitsu, Toshiba, Denso, 
Olympus, Mitsubishi, 
Esol, Cats, Gaio, 3 univ.

Accelerator 1
Code  

Accelerator 2
Code  

H
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Accelerator Compiler/ User 
Add “hint” directives

before a loop or a function 
to specify it is executable 

by the accelerator with 
how many clocks

H
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o

Manual 
parallelization / 
power reduction 



Parallel Processing of Face Detection on Manycore, Highend and PC 
Server

• OSCAR compiler gives us 11.55 times speedup for 16 cores against 1 core 
on SR16000 Power7 highend server.
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Performance on Multicore Server for Latest Cancer 
Treatment Using Heavy Particle (Proton, Carbon Ion)

327 times speedup on 144 cores

 Original sequential execution time 2948 sec （50 minutes） using GCC was 
reduced to  9 sec with 144 cores（327.6 times speedup）
 Reduction of treatment cost and reservation waiting period is expected

33

Hitachi 144cores SMP Blade Server BS500: 
Xeon E7-8890 V3(2.5GHz 18core/chip) x8 chip
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110 Times Speedup against the Sequential 
Processing for GMS Earthquake Wave 

Propagation Simulation on Hitachi SR16000
（Power7 Based 128 Core Linux SMP）

34

Fortran:15 
thousand lines

First touch for distributed shared memory 
and cache optimization over loops are 
important for scalable speedup



Parallel Processing of JPEG XR Encoder on TILEPro64

V1.0 © 2014, IEEE All rights reserved

Multimedia Applications:
Sequential C Source Code

Parallelized C Program 
with OSCAR API

OSCAR Compiler

Parallelized Executable Binary for 
TILEPro64

API Analyzer +
Sequential Compiler

Cache 
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(1)OSCAR Parallelization
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Local cache optimization:
Parallel Data Structure (tile) on heap
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55x speedup on 64 cores 
AAC Encoder
JPEG XR Encoder 
Optical Flow Calc.
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Speedup with 2cores for Engine  Crankshaft Handwritten Program on 
RPX Multi-core Processor

36

Macrotask graph with   a lot of conditional 
branches

Macrotask graph after 
task fusion
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1.6 times Speed 
up by 2 cores  
against 1core

Branches are fused to macrotasks for static 
scheduling 

Grain is too fine (us) for 
dynamic scheduling.



Model Base Designed Engine Control on V850 
Multicore with Denso

Though so far parallel processing of the engine control on 
multicore has been very difficult, Denso and Waseda succeeded 
1.95 times speedup on 2core  V850 multicore processor.

1 core 2 cores

Hard real-time automobile 
engine control by multicore
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C codes generated by 
MATLAB/Simulink embedded 
coder are automatically 
parallelized.



OSCAR Compile Flow for Simulink Applications

38

Simulink model C code

Generate C code
using Embedded Coder

OSCAR Compiler

(1) Generate MTG
→ Parallelism 

(2) Generate gantt chart
→ Scheduling in a multicore

(3) Generate parallelized C code    
using the OSCAR API
→ Multiplatform execution

(Intel, ARM and SH etc)
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Road Tracking, Image Compression : http://www.mathworks.co.jp/jp/help/vision/examples
Buoy Detection :  http://www.mathworks.co.jp/matlabcentral/fileexchange/44706-buoy-detection-using-simulink
Color Edge Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/28114-fast-edges-of-a-color-image--actual-color--not-converting-
to-grayscale-/
Vessel Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/24990-retinal-blood-vessel-extraction/

Speedups of MATLAB/Simulink Image Processing on 
Various 4core Multicores

(Intel Xeon, ARM Cortex A15 and Renesas SH4A)



Parallel Processing on Simulink Model

40

Sequential C Code

Parallelized C Code

• The parallelized C code can be embedded to  Simulink using C 
mex API for HILS and SILS implementation.

Call parallelized C code from the S-Function block

Call sequential C code from the S-Function block



OSCAR API Ver. 2.0 for Homogeneous/Heterogeneous 
Multicores and Manycores

41



An Image of Static Schedule for Heterogeneous Multi-
core with Data Transfer Overlapping and Power Control
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33 Times Speedup Using 
OSCAR Compiler and OSCAR API on RP-X

(Optical Flow with a hand-tuned library) 
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Power Reduction by Power Supply, Clock Frequency and Voltage 
Control by OSCAR Compiler

• Shortest execution time mode

44

Frequency and Voltage (DVFS), Clock and Power gating of each cores are scheduled considering 
the task schedule since the dynamic power proportional to the cube of F (F3) and the leakage power 
(the static power ) can be reduced by the power gating (power off).

In this Fig.
Frequency
Full, Mid,
Low 

Power OFF:   
Power  
Gating



An Example of Machine Parameters 
for the Power Saving Scheme• Functions of the multiprocessor

– Frequency of each proc. is changed to several levels
– Voltage is changed together with frequency
– Each proc. can be powered on/off

state
frequency
voltage
dynamic energy
static power

FULL
1
1
1
1

MID
1 / 2
0.87
3 / 4

1

LOW
1 / 4
0.71
1 / 2

1

OFF
0
0
0
0

state
FULL
MID
LOW
OFF

FULL
0

40k
40k
80k

MID
40k
0

40k
80k

LOW
40k
40k
0

80k

OFF
80k
80k
80k
0

state
FULL
MID
LOW
OFF

FULL
0

20
20
40

MID
20
0

20
40

LOW
20
20
0

40

OFF
40
40
40
0

delay time [u.t.] energy overhead [μJ]

• State transition overhead
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Power Reduction Scheduling

A power schedule for SPEC95 APPLU for fastest execution mode

A macrotask graph assigned to 3 cores A power schedule for fastest execution mode

Doall6, Loop 10,11,12,13, Doall 17, Loop 18,19, 20, 21 are on CP
46

1) Reduce frequencies (Fs) of MTs  on CP considering 
dead line.

2) Reduce Fs  of MTs not on CP. Idle: Clock or Power 
Gating considering overheads. 

Realtime scheduling mode
MTs 1,4,7,8 are on Critical Path (CP) 



Low-Power Optimization  with OSCAR API

47

MT1

VC0

MT2

MT4MT3

Sleep

VC1

Scheduled Result
by OSCAR Compiler void

main_VC0() {

MT1

void
main_VC1() {

MT2

#pragma oscar fvcontrol \
(1,(OSCAR_CPU(),100)) 

#pragma oscar fvcontrol \
((OSCAR_CPU(),0)) 

Sleep

MT4MT3

} }

Generate Code Image by OSCAR Compiler



Power Reduction in a real-time execution controlled 
by OSCAR Compiler and OSCAR API on RP-X

(Optical Flow with a hand-tuned library)

Without Power Reduction With Power Reduction
by OSCAR Compiler

Average:1.76[W] Average:0.54[W]

1cycle : 33[ms]
→30[fps]

70% of power reduction



Automatic Power Reduction for 
MPEG2 Decode on Android Multicore 

ODROID X2 ARM Cortex-A9４cores

• On 3 cores, Automatic Power Reduction control successfully reduced power  to 1/7 
against without Power Reduction control.

• 3 cores with the compiler power reduction control reduced power to 1/3 against 
ordinary 1 core execution.
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http://www.youtube.com/channel/UCS43lNYEIkC8i_KIgFZYQBQ
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Power Reduction on Intel Haswell 
for Real-time Optical Flow

Power was reduced to 1/4 (9.6W) by the compiler power optimization  on the same 3 cores
(41.6W).
Power with 3 core was reduced to 1/3 (9.6W) against 1 core (29.3W) .

Power was 
reduced to 1/4  
by compiler on 3 
cores 

1/3  

For HD 720p(1280x720)  moving pictures
15fps (Deadline66.6[ms/frame])
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64cores
0.18[s]
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Automatic Parallelization of JPEG-XR for 
Drinkable Inner Camera (Endo Capsule)

10 times more speedup needed after  parallelization for 128 cores of  
Power 7.   Less than 35mW  power consumption is required.

Waseda U. & Olympus 51

• TILEPro64

55 times speedup with 64 cores



Target: 

 Solar Powered with 

compiler power reduction.

 Fully automatic 

parallelization and 

vectorization including 

local memory management 

and data transfer.

OSCAR Vector Multicore and Compiler for 
Embedded to Severs with OSCAR Technology

Centralized Shared Memory

Compiler Co-designed Interconnection Network

Compiler co-designed Connection Network

On-chip Shared Memory

Multicore Chip

Vector
Data 

Transfer
Unit

CPU

Local Memory
Distributed Shared Memory

Power Control Unit

Core

×４
chips



Copyright 2008 FUJITSU 
LIMITED
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Fujitsu VPP500/NWT: PE Unit 
CabinetCabinet (open)



Performance of OSCAR Compiler Software Coherence Control
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 Faster or Equal Processing Performance up to 4cores with 
hardware coherent mechanism on RP2.

 Software Coherence gives us correct execution without 
hardware coherence mechanism on 8 cores.
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Automatic Local Memory Management
Data Localization: Loop Aligned Decomposition

• Decomposed loop into LRs and CARs
– LR ( Localizable Region): Data can be passed through LDM
– CAR (Commonly Accessed Region): Data transfers are 

required among processors

55

Single dimension Decomposition
Multi-dimension Decomposition



Adjustable Blocks

• Handling a suitable block size for each 
application
– different from a fixed block size in cache
– each block can be divided into smaller blocks with 

integer divisible size to handle small arrays and 
scalar variables 
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Multi-dimensional Template Arrays 
for Improving Readability

• a mapping technique for arrays with 
varying dimensions
– each block on LDM corresponds to 

multiple empty arrays with varying 
dimensions

– these arrays have an additional 
dimension to store the corresponding 
block number

• TA[Block#][] for single dimension
• TA[Block#][][] for double dimension
• TA[Block#][][][] for triple dimension
• ...

• LDM are represented as a one 
dimensional array
– without Template Arrays, multi-

dimensional arrays have complex index 
calculations

• A[i][j][k] -> TA[offset + i’ * L + j’ * M + k’]
– Template Arrays provide readability

• A[i][j][k] -> TA[Block#][i’][j’][k’] 57

LDM
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Speedups by the Local Memory Management Compared with 
Utilizing Shared Memory on Benchmarks Application using RP2

59

20.12 times speedup for 8cores execution using local memory against 
sequential execution using off-chip shared memory of RP2 for the AACenc



Software Coherence Control Method 
on OSCAR Parallelizing Compiler

 Coarse grain task parallelization with 
earliest condition analysis (control and data 
dependency analysis to detect parallelism 
among coarse grain tasks).

 OSCAR compiler automatically controls 
coherence using following simple program 
restructuring methods:
 To cope with stale data problems:

Data synchronization by compilers
 To cope with false sharing problem:

Data Alignment
Array Padding
Non-cacheable Buffer

MTG generated by 
earliest executable 
condition analysis



Performance of Software Coherence Control by 
OSCAR Compiler on 8-core RP2
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Target: 
 Solar Powered

 Compiler power reduction.
Fully automatic parallelization and 
vectorization including local memory 
management and data transfer.

OSCAR Vector Multicore and Compiler for 
Embedded to Severs with OSCAR Technology

Centralized Shared Memory

Compiler Co-designed Interconnection Network

Compiler co-designed Connection Network

On-chip Shared Memory

Multicore Chip

Vector
Data 

Transfer
Unit

CPU

Local Memory
Distributed Shared Memory

Power Control Unit

Core

×４
chips



Future Multicore Products
Next Generation Automobiles
- Safer, more comfortable, energy efficient, environment 
friendly
- Cameras, radar, car2car communication, internet 
information integrated brake, steering, engine, moter  
control

Solar powered with more than 100 
times power efficient :  FLOPS/W
• Regional Disaster Simulators

saving lives from tornadoes, 
localized heavy rain, fires with 
earth quakes

-From everyday recharging to 
less than once a week
- Solar powered operation  in
emergency condition
- Keep health 

Smart phones
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Cancer treatment, 
Drinkable inner camera
• Emergency solar powered
• No cooling fun, No dust ,

clean usable inside OP room

Advanced medical systems Personal / Regional 
Supercomputers



Summary
 To get speedup and power reduction on homogeneous and heterogeneous 

multicore systems, collaboration of architecture and compiler will be more 
important.

 Automatic Parallelizing and Power Reducing Compiler has succeeded speedup 
and/or power reduction of scientific applications including “Earthquake Wave 
Propagation”, medical applications including “Cancer Treatment Using Carbon 
Ion”, and “Drinkable Inner Camera”, industry application including “Automobile 
Engine Control”, and “Wireless communication Base Band Processing” on 
various multicores.
 For example, the automatic parallelization gave us 110 times speedup for

“Earthquake Wave Propagation Simulation” on 128 cores of IBM Power 7 
against 1 core, 327 times speedup for “Heavy Particle Radiotherapy Cancer 
Treatment” on 144cores Hitachi Blade Server using Intel Xeon E7-8890 , 1.95 
times for “Automobile Engine Control” on Renesas 2 cores using SH4A or 
V850, 55 times for “JPEG-XR Encoding for Capsule Inner Cameras” on Tilera 
64 cores Tile64 manycore.

 In automatic power reduction, consumed powers for real-time multi-media 
applications like Human face detection, H.264, mpeg2 and optical flow were 
reduced to 1/2 or 1/3 using 3 cores of ARM Cortex A9 and Intel Haswell  and  
1/4 using Renesas SH4A 8 cores against ordinary single core execution. 

 For more speedup and power reduction,  we have been developing a new 
architecture/compiler co-designed multicore with vector accelerator based on 
vector pipelining with vector registers, chaining, load-store pipeline, advanced 
DMA controller without need of modification of CPU instruction set. 
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