
Software and Hardware for
High Performance and Low Power
Homogeneous and Heterogeneous

Multicore Systems
Hironori Kasahara

Professor, Dept. of Computer Science & Engineering
Director, Advanced Multicore Processor Research Institute

Waseda University, Tokyo, Japan
IEEE Computer Society President Elect 2017

URL: http://www.kasahara.cs.waseda.ac.jp/

Waseda Univ. GCSC

Core#2 Core#3

Core#1

Core#4 Core#5

Core#6 Core#7

SN
C

0
SN

C
1

DBSC

DDRPAD
GCPGC

SM

L
B

SC

SHWY

URAMDLRAM

Core#0
ILRAM

D$

I$

VSWC

Multicores for Performance and Low Power

IEEE ISSCC08: Paper No. 4.5,
M.ITO, … and H. Kasahara,

“An 8640 MIPS SoC with
Independent Power-off Control of 8
CPUs and 8 RAMs by an Automatic

Parallelizing Compiler”

Power ∝ Frequency * Voltage2

(Voltage ∝ Frequency)
Power ∝ Frequency3

If Frequency is reduced to 1/4
(Ex. 4GHz1GHz),

Power is reduced to 1/64 and
Performance falls down to 1/4 .
<Multicores>
If 8cores are integrated on a chip,
Power is still 1/8 and
Performance becomes 2 times.

2

Power consumption is one of the biggest problems for performance
scaling from smartphones to cloud servers and supercomputers
(“K” more than 10MW) .

Earthquake wave propagation simulation GMS developed by National
Research Institute for Earth Science and Disaster Resilience (NIED)

 Automatic parallelizing compiler available on the market gave us no speedup against execution time on 1 core on 64 cores
 Execution time with 128 cores was slower than 1 core (0.9 times speedup)

 Advanced OSCAR parallelizing compiler gave us 211 times speedup with 128cores against execution time with 1 core
using commercial compiler
 OSCAR compiler gave us 2.1 times speedup on 1 core against commercial compiler by global cache optimization

3

Parallel Soft is important for scalable
performance of multicore
Just more cores don’t give us speedup
Development cost and period of parallel software are
getting a bottleneck of development of embedded
systems, eg. IoT, Automobile

Fjitsu M9000 SPARC
Multicore Server

OSCAR
Compiler gives
us 211 times
speedup with
128 cores

Commercial
compiler gives
us 0.9 times
speedup with
128 cores (slow-
downed against
1 core)

１P

Trend of Peak Performances of Supercomputers

2020-22 米中欧日
ExaFLOPS計画

１E

１T

１G

京,2011.6&11, 11PFLOPS, 11.3MW

Tianhe-2, 2013.06, 55PFLOPS, 17.8MW

Titan,2012.11,27PFLOPS,8.2MW

Sequoia,2012.06, 20PFLOPS, 7.9MW

１Z
Aurora,2018,180PFLOPS,13MW,Argonne National Lab., Intel & Cray

Sunway TaihuLight, 2016.06, 93PFLOPS, 15.4MW

Power Reduction of MPEG2 Decoding to 1/4
on 8 Core Homogeneous Multicore RP-2

by OSCAR Parallelizing Compiler

Avg. Power
5.73 [W]

Avg. Power
1.52 [W]

73.5% Power Reduction
5

MPEG2 Decoding with 8 CPU cores

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Without Power
Control
（Voltage：1.4V)

With Power Control
（Frequency,
Resume Standby:
Power shutdown &
Voltage lowering 1.4V-1.0V)

Core #3

I$
16K

D$
16K

CPU FPU

User RAM 64K

Local memory
I:8K, D:32K

Core #2

I$
16K

D$
16K

CPU FPU

User RAM 64K

Local memory
I:8K, D:32K

Core #1

I$
16K

D$
16K

CPU FPU

User RAM 64K

Local memory
I:8K, D:32K

Core #0

I$
16K

D$
16K

CPU FPU

URAM 64K

Local memory
I:8K, D:32K

CCN
BAR

Compiler Co-designed Multicore RP2

On-chip system bus (SuperHyway)

DDR2
LCPG: Local clock pulse generator
PCR: Power Control Register
CCN/BAR:Cache controller/Barrier Register
URAM: User RAM (Distributed Shared Memory)

Sn
oo

p
co

nt
ro

lle
r

1

Sn
oo

p
co

nt
ro

lle
r

0LCPG0

Cluster #0 Cluster #1

PCR3

PCR2

PCR1

PCR0

LCPG1

PCR7

PCR6

PCR5

PCR4

control
SRAM

control
DMA

control

Core #7

I$
16K

D$
16K

CPUFPU

User RAM 64K
I:8K, D:32K

Core #6

I$
16K

D$
16K

CPUFPU

User RAM 64K
I:8K, D:32K

Core #5

I$
16K

D$
16K

CPUFPU

User RAM 64K
I:8K, D:32K

Core #4

I$
16K

D$
16K

CPUFPU

URAM 64K

Local memory
I:8K, D:32K

CCN
BAR

Barrier
Sync. Lines

Renesas-Hitachi-Waseda Low Power 8 core RP2
Developed in 2007 in METI/NEDO project

Process
Technology

90nm, 8-layer, triple-
Vth, CMOS

Chip Size 104.8mm2

(10.61mm x 9.88mm)
CPU Core
Size

6.6mm2

(3.36mm x 1.96mm)
Supply
Voltage

1.0V–1.4V (internal),
1.8/3.3V (I/O)

Power
Domains

17 (8 CPUs,
8 URAMs, common)

Core#2 Core#3

Core#1

Core#4 Core#5

Core#6 Core#7

SN
C

0
SN

C
1

DBSC

DDRPAD
GCPG

C
SM

L
B

SC

SHWY

URAMDLRAM

Core#0
ILRAM

D$

I$

VSWC

IEEE ISSCC08: Paper No. 4.5, M.ITO, … and H. Kasahara,
“An 8640 MIPS SoC with Independent Power-off Control of 8
CPUs and 8 RAMs by an Automatic Parallelizing Compiler”

7

Solar Powered
Smart phones

Cameras

Robots

Cool desktop servers

Industry-government-academia collaboration in R&D
and target practical applications

On-board vehicle technology
(navigation systems, integrated
controllers, infrastructure
coordination)

Consumer electronic
Internet TV/DVD

Non-fan, cool, quiet servers
designed for server

Green cloud servers

Stock trading

Operation/recharging
by solar cells

OSCAR many-core chip

Green
supercomputers

O
S
C

A
R

O
S
C

A
R

OSCAR
Many-core

Chip

8

Waseda University :R&D
Many-core system technologies with

ultra-low power consumption
Super real-time disaster
simulation (tectonic shifts,
tsunami), tornado, flood,
fire spreading)

National Institute of
Radiological Sciences

Protect lives

Protect environment
For smart life

Camcorders

Intelligent home
appliances

Supercomputers
and servers

Industry

Capsule inner
cameras

Compiler, API

Medical servers

Heavy particle radiation planning,
cerebral infarction)

8.9times speedup by 12 processors
Intel Xeon X5670 2.93GHz 12
core SMP (Hitachi HA8000)

55 times speedup by 64 processors
IBM Power 7 64 core SMP

(Hitachi SR16000)

National Institute of
Radiological Sciences
(NIRS)

Cancer Treatment
Carbon Ion Radiotherapy

(Previous best was 2.5 times speedup on 16 processors with hand optimization)

To improve effective performance, cost-performance
and software productivity and reduce power

OSCAR Parallelizing Compiler

Multigrain Parallelization
coarse-grain parallelism among loops
and subroutines, near fine grain
parallelism among statements in
addition to loop parallelism

Data Localization
Automatic data management for
distributed shared memory, cache
and local memory

Data Transfer Overlapping
Data transfer overlapping using Data
Transfer Controllers (DMAs)

Power Reduction
Reduction of consumed power by
compiler control DVFS and Power
gating with hardware supports.

CPU0

CORE DTU

CPU1

CORE DTU

CPU2

CORE DTU

CPU3

CORE DTU

DRP0

CORE DTU

MT1-1 MT1-2

LOAD LOAD
LOAD LOAD

MT1-3 MT1-4

SEND SEND

MT2-1

SEND

LOAD

SEND

MT2-2

LOAD

MT2-3

SEND

OFF
OFF

OFF

MT3-1

LOAD

MT2-4MT3-2
MT3-3

SEND

LOAD

LOAD

LOAD
LOAD

MT2-5

LOAD

MT2-6

SEND

LOAD

MT2-7

SEND

SENDLOAD

OFF

SEND

MT3-5

LOAD
SEND

LOADLOAD

LOAD

MT3-8

SEND

OFFMT3-7

LOAD

MT2-8

SEND
SEND

LOAD

OFF
STORE

STORE
STORE

STORE

T
IM

E

 MTG1

 MTG2 MTG3

MT3-4 MT3-6

Performance of OSCAR Compiler on IBM p6 595 Power6 (4.2GHz)
based 32-core SMP Server

Compile Option:
(*1) Sequential: -O3 –qarch=pwr6, XLF: -O3 –qarch=pwr6 –qsmp=auto, OSCAR: -O3 –qarch=pwr6 –qsmp=noauto
(*2) Sequential: -O5 -q64 –qarch=pwr6, XLF: -O5 –q64 –qarch=pwr6 –qsmp=auto, OSCAR: -O5 –q64 –qarch=pwr6 –qsmp=noauto
(Others) Sequential: -O5 –qarch=pwr6, XLF: -O5 –qarch=pwr6 –qsmp=auto, OSCAR: -O5 –qarch=pwr6 –qsmp=noauto

AIX
Ver.12.1

11

Generation of Coarse Grain Tasks
Macro-tasks (MTs)
 Block of Pseudo Assignments (BPA): Basic Block (BB)
 Repetition Block (RB) : natural loop
 Subroutine Block (SB): subroutine

Program

BPA

RB

SB

Near fine grain parallelization

Loop level parallelization
Near fine grain of loop body
Coarse grain
parallelization
Coarse grain
parallelization

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB
BPA
RB
SB
BPA
RB
SB
BPA
RB
SB

1st. Layer 2nd. Layer 3rd. LayerTotal
System

12

Earliest Executable Condition Analysis for Coarse
Grain Tasks (Macro-tasks)

A Macro Flow Graph
A Macro Task
Graph

13

V1.0 © 2014, IEEE All rights reserved

PRIORITY DETERMINATION
IN DYNAMIC CP METHOD

14

60*0.80+100*0.20=68

V1.0 © 2014, IEEE All rights reserved

Earliest Executable Conditions

15

EEC: Control dependence + Data Dependence
Control dependences show executions of MTs are decided
Data dependences show data accessed by MTs are ready

MT2 may start
execution after
MT1 branches to
MT2 and MT1
finish execution.

MT3 may start execution
after MT1 branches to MT3.

MT6 may start execution
after MT3 finish execution or
MT2 branches to MT4.

Automatic processor assignment in 103.su2cor

• Using 14 processors
Coarse grain parallelization within DO400

16

MTG of Su2cor-LOOPS-DO400

DOALL Sequential LOOP BBSB

 Coarse grain parallelism PARA_ALD = 4.3

17

Data-Localization: Loop Aligned Decomposition
• Decompose multiple loop (Doall and Seq) into CARs and LRs

considering inter-loop data dependence.
– Most data in LR can be passed through LM.
– LR: Localizable Region, CAR: Commonly Accessed Region

DO I=69,101DO I=67,68DO I=36,66DO I=34,35DO I=1,33

DO I=1,33

DO I=2,34

DO I=68,100

DO I=67,67

DO I=35,66

DO I=34,34

DO I=68,100DO I=35,67

LR CAR CARLR LR

C RB2(Doseq)
DO I=1,100

B(I)=B(I-1)
+A(I)+A(I+1)

ENDDO

C RB1(Doall)
DO I=1,101
A(I)=2*I

ENDDO

RB3(Doall)
DO I=2,100

C(I)=B(I)+B(I-1)
ENDDO

C

18

Inter-loop data dependence analysis in TLG

• Define exit-RB in TLG
as Standard-Loop

• Find iterations on which
a iteration of Standard-Loop is
data dependent
– e.g. Kth of RB3 is data-dep

on K-1th,Kth of RB2,
on K-1th,Kth,K+1th of RB1
indirectly.

C RB2(Doseq)
DO I=1,100
B(I)=B(I-1)

+A(I)+A(I+1)
ENDDO

C RB1(Doall)
DO I=1,101
A(I)=2*I

ENDDO

C RB3(Doall)
DO I=2,100
C(I)=B(I)+B(I-1)

ENDDO

Example of TLG

I(RB1)

I(RB2)

I(RB3)
K

K

K K+1K-1

K-1

19

Decomposition of RBs in TLG

• Decompose GCIR into DGCIRp(1≦p≦n)
– n: (multiple) num of PCs, DGCIR: Decomposed GCIR

• Generate CAR on which DGCIRp&DGCIRp+1 are data-dep.
• Generate LR on which DGCIRp is data-dep.

GCIR

I(RB2)

I(RB3)

I(RB1)
101

100

99 100

10099

2

2

2 31

1

66 67

6766

34

33 34

3433

68

67

36

35

35

35 66

65

65
RB11 RB12 RB13RB1<1,2> RB1<2,3>

RB21

RB31 RB32

RB22 RB23

RB33

RB2<1,2> RB2<2,3>

DGCIR1 DGCIR2 DGCIR3

20

Data Localization

MTG MTG after Division A schedule for
two processors

21

An Example of Data Localization for Spec95 Swim
DO 200 J=1,N
DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+
1 TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J)
2 +CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))

VNEW(I,J+1) = VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+Z(I,J+1))
1 *(CU(I+1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J))
2 -TDTSDY*(H(I,J+1)-H(I,J))

PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J))
1 -TDTSDY*(CV(I,J+1)-CV(I,J))

200 CONTINUE

DO 300 J=1,N
DO 300 I=1,M

UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))

300 CONTINUE

DO 210 J=1,N
UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)

210 CONTINUE

UN
VO
Z

PNVN UO
PO CVCU
H

UN
PNVN

UN
VOPNVN UO

PO

U PV

0 1 2 3 4MB
cache size

(a) An example of target loop group for data localization

(b) Image of alignment of arrays on
cache accessed by target loops

Cache line conflicts occurs
among arrays which share the
same location on cache

DO 200 J=1,N
DO 200 I=1,M

UNEW(I+1,J) = UOLD(I+1,J)+
1 TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J)
2 +CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))

VNEW(I,J+1) = VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+Z(I,J+1))
1 *(CU(I+1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J))
2 -TDTSDY*(H(I,J+1)-H(I,J))

PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J))
1 -TDTSDY*(CV(I,J+1)-CV(I,J))

200 CONTINUE

DO 300 J=1,N
DO 300 I=1,M

UOLD(I,J) = U(I,J)+ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
VOLD(I,J) = V(I,J)+ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
POLD(I,J) = P(I,J)+ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))

300 CONTINUE

DO 210 J=1,N
UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)

210 CONTINUE

UN
VO
Z

PNVN UO
PO CVCU
H

UN
PNVN

UN
VOPNVN UO

PO

U PV

0 1 2 3 4MB
cache size

(a) An example of target loop group for data localization

(b) Image of alignment of arrays on
cache accessed by target loops

Cache line conflicts occurs
among arrays which share the
same location on cache

22

PARAMETER (N1=513, N2=513)

COMMON U(N1,N2), V(N1,N2), P(N1,N2),
* UNEW(N1,N2), VNEW(N1,N2),
1 PNEW(N1,N2), UOLD(N1,N2),
* VOLD(N1,N2), POLD(N1,N2),
2 CU(N1,N2), CV(N1,N2),
* Z(N1,N2), H(N1,N2)

Data Layout for Removing Line Conflict Misses
by Array Dimension Padding

Declaration part of arrays in spec95 swim

PARAMETER (N1=513, N2=544)

COMMON U(N1,N2), V(N1,N2), P(N1,N2),
* UNEW(N1,N2), VNEW(N1,N2),
1 PNEW(N1,N2), UOLD(N1,N2),
* VOLD(N1,N2), POLD(N1,N2),
2 CU(N1,N2), CV(N1,N2),
* Z(N1,N2), H(N1,N2)

before padding after padding

Box: Access range of DLG0

4MB 4MB

padding

23

Statement Level Near Fine Grain Task
<<LU Decomposition>>
1) u12 = a12/l11
2) u24 = a24/l22
3) u34 = a34/l33
4) l54 = -l52 * u24
5) u45 = a45/l44
6) l55 = u55 - l54 * u45

<<Forward Substitution>>
7) y1 = b1 / l11
8) y2 = b2 / l22
9) b5 = b5 - l52 * y2
10) y3 = b3 / l33
11) y4 = b4 / l44
12) b5 = b5 - l54 * y4
13) y5 = b5 / l55

<<Backward Substitution>>
14) x4 = y4 - u45 * y5
15) x3 = y3 - u34 * x4
16) x2 = y2 - u24 * x4
17) x1 = y1 - u12 * x2

0

8 1 7

9

523

4

10

6 12

13

14

15 16
17

18

11
19

10

8

19

19 19 19 19 19 19 19

10

10

10

10 10

10

Task No.

Task
Processing
Time

Data
Transfer
Time tij

t = 0
If Ti and Tj
are on the
same PE

t = 9
If Ti and Tj are
on different PE

ij

ij

24

Task Graph for FPPPP
Statement level near fine grain parallelism

25

Elimination of Redundant Synchronization for
Shared Data on Centralized Shared Memory

after Static Task Scheduling

FS

FC

FC

FC

E

A

D

B

C

PE3PE2PE1

FC

FC
FC

FC

FS

FS

FS

FS

FC

FC

Precedence
relations

Flag set

Flag check

Unnecessary

Generated Parallel Machine Code for Near
Fine Grain Parallel Processing

FC

A

B

C

PE2PE1

FS

PE1
; ---- Task A ----
; Task Body

FADD R23, R19, R21
; ---- Task B ----
; Flag Check : Task C
L18:

LDR R28, [R14, 0]
CMP R28, R0
JNE L18

; Data Receive
LDR R29, [R14, 1]

; Task Body
FMLT R24, R23, R29

PE2
; ---- Task C ----
; Task Body

FMLT R27, R28, R29
FSUB R29, R19, R27

; Data Transfer
STR [R14, 1], R29

; Flag Set
STR [R14, 0], R0

27

【W-CDMA Base Band Communication】
Near Fine Grain Parallel Processing of EAICH Detection Program on RP2

Multicore with 4 SH4A cores

28

 Hadamard transform often
used in the signal processing

 Parallel Processing Method
– Near fine grain parallel

processing among
statements

– Static Scheduling
Special purpose
Hardware
(250MHz): 1.74μs

1.62 times speedup for 2cores, 3.45 times speedup for 4 cores for EAICH on RP2.

Generated Multigrain Parallelized Code
(The nested coarse grain task parallelization is realized by only OpenMP

“section”, “Flush” and “Critical” directives.)

Centralized
scheduling
code

Distributed
scheduling
code

T0 T1 T2 T3

Thread
group0

MT1_1

SYNC SEND
MT1_2

SYNC RECV

T4 T5 T6 T7

1_4_2

1_4_4

1_4_3

1_4_1

1_4_2

1_4_4

1_4_3

1_4_1
1_3_2

1_3_4

1_3_3

1_3_1

1_3_6

1_3_5

1_3_2

1_3_4

1_3_3

1_3_1

1_3_6

1_3_5

1_3_2

1_3_4

1_3_3

1_3_1

1_3_6

1_3_5

SECTIONS
SECTION SECTION

END SECTIONS

Thread
group1

MT1_1

MT1_3
SB

MT1_2
DOALL

MT1_4
RB

1st layer

2nd layer

1_3_1

1_3_2 1_3_3

1_3_5

1_3_4

1_3_6

1_4_21_4_3 1_4_4

1_4_1

MT1-4

MT1-3

2nd layer 29

Code Generation Using OpenMP
• Compiler generates a parallelized program using OpenMP API
• One time single level thread generation

– Threads are forked only once at the beginning of a program by
OpenMP “PARALLEL SECTIONS” directive

– Forked threads join only once at the end of program

• Compiler generates codes for each threads using static or
dynamic scheduling schemes

• Extension of OpenMP for hierarchical processing is not
required

30

Low Power
Heterogeneous
Multicore Code

Generation
API

Analyzer
(Available

from
Waseda)

Existing
sequential
compiler

Multicore Program Development Using OSCAR API V2.0
Sequential Application

Program in Fortran or C
(Consumer Electronics, Automobiles,
Medical, Scientific computation, etc.)

Low Power
Homogeneous
Multicore Code

Generation
API

Analyzer
Existing

sequential
compiler

Proc0

Thread 0

Code with
directives

Waseda OSCAR
Parallelizing Compiler

Coarse grain task
parallelization
Data Localization
DMAC data transfer
Power reduction using DVFS,
Clock/ Power gating

Proc1

Thread 1

Code with
directives

Parallelized
API F or C
program

OSCAR API for Homogeneous and/or
Heterogeneous Multicores and manycores
Directives for thread generation, memory,

data transfer using DMA, power
managements

Generation of
parallel machine

codes using
sequential
compilers

E
xe

cu
ta

bl
e

on
 v

ar
io

us
 m

ul
tic

or
es

OSCAR: Optimally Scheduled Advanced Multiprocessor
API： Application Program Interface

Homegeneous
Multicore s

from Vendor A
(SMP servers)

Server Code
Generation
OpenMP
Compiler

Shred memory
servers

Heterogeneous
Multicores

from Vendor B

Hitachi, Renesas, NEC,
Fujitsu, Toshiba, Denso,
Olympus, Mitsubishi,
Esol, Cats, Gaio, 3 univ.

Accelerator 1
Code

Accelerator 2
Code

H
om

og
en

eo
us

Accelerator Compiler/ User
Add “hint” directives

before a loop or a function
to specify it is executable

by the accelerator with
how many clocks

H
et

er
o

Manual
parallelization /
power reduction

Parallel Processing of Face Detection on Manycore, Highend and PC
Server

• OSCAR compiler gives us 11.55 times speedup for 16 cores against 1 core
on SR16000 Power7 highend server.

1.00
1.72

3.01

5.74

9.30

1.00
1.93

3.57

6.46

11.55

1.00
1.93

3.67

6.46

10.92

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 2 4 8 16

速
度

向
上

率

コア数

速度向上率
tilepro64 gcc

SR16k(Power7 8core*4cpu*4node) xlc

rs440(Intel Xeon 8core*4cpu) icc

32

Performance on Multicore Server for Latest Cancer
Treatment Using Heavy Particle (Proton, Carbon Ion)

327 times speedup on 144 cores

 Original sequential execution time 2948 sec （50 minutes） using GCC was
reduced to 9 sec with 144 cores（327.6 times speedup）
 Reduction of treatment cost and reservation waiting period is expected

33

Hitachi 144cores SMP Blade Server BS500:
Xeon E7-8890 V3(2.5GHz 18core/chip) x8 chip

1.00 5.00

109.20

196.50

327.60

0

50

100

150

200

250

300

350

1PE 32pe 64pe 144pe

327.6 times speed up with 144 cores

GCC

110 Times Speedup against the Sequential
Processing for GMS Earthquake Wave

Propagation Simulation on Hitachi SR16000
（Power7 Based 128 Core Linux SMP）

34

Fortran:15
thousand lines

First touch for distributed shared memory
and cache optimization over loops are
important for scalable speedup

Parallel Processing of JPEG XR Encoder on TILEPro64

V1.0 © 2014, IEEE All rights reserved

Multimedia Applications:
Sequential C Source Code

Parallelized C Program
with OSCAR API

OSCAR Compiler

Parallelized Executable Binary for
TILEPro64

API Analyzer +
Sequential Compiler

Cache
Allocation
Setting

1x

28x

55x

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 64
Sp

ee
du

p
Cores

Speedup (JPEG XR Encoder)

Default Cache Allocation
Our Cache Allocation

(1)OSCAR Parallelization

(2)Cache Allocation Setting

Local cache optimization:
Parallel Data Structure (tile) on heap
allocating to local cache

55x speedup on 64 cores
AAC Encoder
JPEG XR Encoder
Optical Flow Calc.

0
,
0

1
,
0

2
,
0

3
,
0

4
,
0

5
,
0

6
,
0

7
,
0

0
,
1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

0
,
2

1
,
2

2
,
2

3
,
2

4
,
2

5
,
2

6
,
2

7
,
2

0
,
3

1
,
3

2
,
3

3
,
3

4
,
3

5
,
3

6
,
3

7
,
3

0
,
4

1
,
4

2
,
4

3
,
4

4
,
4

5
,
4

6
,
4

7
,
4

0
,
5

1
,
5

2
,
5

3
,
5

4
,
5

5
,
5

6
,
5

7
,
5

0
,
6

1
,
6

2
,
6

3
,
6

4
,
6

5
,
6

6
,
6

7
,
6

0
,
7

1
,
7

2
,
7

3
,
7

4
,
7

5
,
7

6
,
7

7
,
7

I/O

I/O
I/O

Memory
Controller 0

Memory
Controller 1

Memory
Controller 2

Memory
Controller 3

{

35

Speedup with 2cores for Engine Crankshaft Handwritten Program on
RPX Multi-core Processor

36

Macrotask graph with a lot of conditional
branches

Macrotask graph after
task fusion

1

1.60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

速度向上率

1core

2core

1core 2core

1.6 times Speed
up by 2 cores
against 1core

Branches are fused to macrotasks for static
scheduling

Grain is too fine (us) for
dynamic scheduling.

Model Base Designed Engine Control on V850
Multicore with Denso

Though so far parallel processing of the engine control on
multicore has been very difficult, Denso and Waseda succeeded
1.95 times speedup on 2core V850 multicore processor.

1 core 2 cores

Hard real-time automobile
engine control by multicore

37

C codes generated by
MATLAB/Simulink embedded
coder are automatically
parallelized.

OSCAR Compile Flow for Simulink Applications

38

Simulink model C code

Generate C code
using Embedded Coder

OSCAR Compiler

(1) Generate MTG
→ Parallelism

(2) Generate gantt chart
→ Scheduling in a multicore

(3) Generate parallelized C code
using the OSCAR API
→ Multiplatform execution

(Intel, ARM and SH etc)

39

Road Tracking, Image Compression : http://www.mathworks.co.jp/jp/help/vision/examples
Buoy Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/44706-buoy-detection-using-simulink
Color Edge Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/28114-fast-edges-of-a-color-image--actual-color--not-converting-
to-grayscale-/
Vessel Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/24990-retinal-blood-vessel-extraction/

Speedups of MATLAB/Simulink Image Processing on
Various 4core Multicores

(Intel Xeon, ARM Cortex A15 and Renesas SH4A)

Parallel Processing on Simulink Model

40

Sequential C Code

Parallelized C Code

• The parallelized C code can be embedded to Simulink using C
mex API for HILS and SILS implementation.

Call parallelized C code from the S-Function block

Call sequential C code from the S-Function block

OSCAR API Ver. 2.0 for Homogeneous/Heterogeneous
Multicores and Manycores

41

An Image of Static Schedule for Heterogeneous Multi-
core with Data Transfer Overlapping and Power Control

CPU0

CORE DTU

CPU1

CORE DTU

CPU2

CORE DTU

CPU3

CORE DTU

DRP0

CORE DTU

MT1-1 MT1-2

LOAD LOAD
LOAD LOAD

MT1-3 MT1-4

SEND SEND

MT2-1

SEND

LOAD

SEND

MT2-2

LOAD

MT2-3

SEND

OFF
OFF

OFF

MT3-1

LOAD

MT2-4MT3-2
MT3-3

SEND

LOAD

LOAD

LOAD
LOAD

MT2-5

LOAD

MT2-6

SEND

LOAD

MT2-7

SEND

SEND

LOAD

OFF

SEND

MT3-5

LOAD

SEND

LOAD

LOAD

LOAD

MT3-8

SEND

OFFMT3-7

LOAD

MT2-8

SEND
SEND

LOAD

OFF
STORE

STORE
STORE

STORE

T
IM

E

 MTG1

 MTG2 MTG3

MT3-4 MT3-6

42

33 Times Speedup Using
OSCAR Compiler and OSCAR API on RP-X

(Optical Flow with a hand-tuned library)

1
2.29 3.09

5.4

18.85

26.71

32.65

0

5

10

15

20

25

30

35

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

Sp
ee

du
ps

 a
ga

in
st

 a
 si

ng
le

 S
H

 p
ro

ce
ss

or

3.4[fps]

111[fps]

Power Reduction by Power Supply, Clock Frequency and Voltage
Control by OSCAR Compiler

• Shortest execution time mode

44

Frequency and Voltage (DVFS), Clock and Power gating of each cores are scheduled considering
the task schedule since the dynamic power proportional to the cube of F (F3) and the leakage power
(the static power) can be reduced by the power gating (power off).

In this Fig.
Frequency
Full, Mid,
Low

Power OFF:
Power
Gating

An Example of Machine Parameters
for the Power Saving Scheme• Functions of the multiprocessor

– Frequency of each proc. is changed to several levels
– Voltage is changed together with frequency
– Each proc. can be powered on/off

state
frequency
voltage
dynamic energy
static power

FULL
1
1
1
1

MID
1 / 2
0.87
3 / 4

1

LOW
1 / 4
0.71
1 / 2

1

OFF
0
0
0
0

state
FULL
MID
LOW
OFF

FULL
0

40k
40k
80k

MID
40k
0

40k
80k

LOW
40k
40k
0

80k

OFF
80k
80k
80k
0

state
FULL
MID
LOW
OFF

FULL
0

20
20
40

MID
20
0

20
40

LOW
20
20
0

40

OFF
40
40
40
0

delay time [u.t.] energy overhead [μJ]

• State transition overhead

45

Power Reduction Scheduling

A power schedule for SPEC95 APPLU for fastest execution mode

A macrotask graph assigned to 3 cores A power schedule for fastest execution mode

Doall6, Loop 10,11,12,13, Doall 17, Loop 18,19, 20, 21 are on CP
46

1) Reduce frequencies (Fs) of MTs on CP considering
dead line.

2) Reduce Fs of MTs not on CP. Idle: Clock or Power
Gating considering overheads.

Realtime scheduling mode
MTs 1,4,7,8 are on Critical Path (CP)

Low-Power Optimization with OSCAR API

47

MT1

VC0

MT2

MT4MT3

Sleep

VC1

Scheduled Result
by OSCAR Compiler void

main_VC0() {

MT1

void
main_VC1() {

MT2

#pragma oscar fvcontrol \
(1,(OSCAR_CPU(),100))

#pragma oscar fvcontrol \
((OSCAR_CPU(),0))

Sleep

MT4MT3

} }

Generate Code Image by OSCAR Compiler

Power Reduction in a real-time execution controlled
by OSCAR Compiler and OSCAR API on RP-X

(Optical Flow with a hand-tuned library)

Without Power Reduction With Power Reduction
by OSCAR Compiler

Average:1.76[W] Average:0.54[W]

1cycle : 33[ms]
→30[fps]

70% of power reduction

Automatic Power Reduction for
MPEG2 Decode on Android Multicore

ODROID X2 ARM Cortex-A9４cores

• On 3 cores, Automatic Power Reduction control successfully reduced power to 1/7
against without Power Reduction control.

• 3 cores with the compiler power reduction control reduced power to 1/3 against
ordinary 1 core execution.

0.97

1.88

2.79

0.63 0.46 0.37

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3

Po
w

er
 C

on
su

m
pt

io
n

[W
]

No. of Processor Cores

電力制御なし 電力制御あり
Without Power
Reduction

With Power
Reduction

2/3
(-35.0%)

1/4
（-75.5%）

1/7(-86.7%)

1/3
(-61.9%)

http://www.youtube.com/channel/UCS43lNYEIkC8i_KIgFZYQBQ

49

Power Reduction on Intel Haswell
for Real-time Optical Flow

Power was reduced to 1/4 (9.6W) by the compiler power optimization on the same 3 cores
(41.6W).
Power with 3 core was reduced to 1/3 (9.6W) against 1 core (29.3W) .

Power was
reduced to 1/4
by compiler on 3
cores

1/3

For HD 720p(1280x720) moving pictures
15fps (Deadline66.6[ms/frame])

29.29

36.59
41.58

24.17

12.21 9.60

0
5

10
15
20
25
30
35
40
45
50

1PE 2PE 3PEav
er

ag
e

po
w

er
 co

ns
um

pt
io

n
[W

]

number of PE

without power control with power control

Intel CPU Core i7 4770K

50

64cores
0.18[s]

1.00 1.96 3.95
7.86

15.82

30.79

55.11

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 4 8 16 32 64

Sp
ee

d
up

コア数

Speed-ups on TILEPro64 Manycore

1core
10.0[s]

Automatic Parallelization of JPEG-XR for
Drinkable Inner Camera (Endo Capsule)

10 times more speedup needed after parallelization for 128 cores of
Power 7. Less than 35mW power consumption is required.

Waseda U. & Olympus 51

• TILEPro64

55 times speedup with 64 cores

Target:

 Solar Powered with

compiler power reduction.

 Fully automatic

parallelization and

vectorization including

local memory management

and data transfer.

OSCAR Vector Multicore and Compiler for
Embedded to Severs with OSCAR Technology

Centralized Shared Memory

Compiler Co-designed Interconnection Network

Compiler co-designed Connection Network

On-chip Shared Memory

Multicore Chip

Vector
Data

Transfer
Unit

CPU

Local Memory
Distributed Shared Memory

Power Control Unit

Core

×４
chips

Copyright 2008 FUJITSU
LIMITED

53

Fujitsu VPP500/NWT: PE Unit
CabinetCabinet (open)

Performance of OSCAR Compiler Software Coherence Control

1.00

1.89

3.54

1.00

1.62

2.54

1.00

1.85

3.34

1.02

1.92

3.59

5.90

1.01
1.61

2.45

3.36

1.02

2.10

3.90

6.63

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 4 8 1 2 4 8 1 2 4 8

AAC Encoder MPEG2 Decoder MPEG2 Encoder

Se
ed

 U
p

ag
ai

ns
t s

eq
ue

nt
ia

l P
ro

ce
ss

in
g

No. of processor cores

SMP
Non-Coherent Cache

 Faster or Equal Processing Performance up to 4cores with
hardware coherent mechanism on RP2.

 Software Coherence gives us correct execution without
hardware coherence mechanism on 8 cores.

54

Automatic Local Memory Management
Data Localization: Loop Aligned Decomposition

• Decomposed loop into LRs and CARs
– LR (Localizable Region): Data can be passed through LDM
– CAR (Commonly Accessed Region): Data transfers are

required among processors

55

Single dimension Decomposition
Multi-dimension Decomposition

Adjustable Blocks

• Handling a suitable block size for each
application
– different from a fixed block size in cache
– each block can be divided into smaller blocks with

integer divisible size to handle small arrays and
scalar variables

56

Multi-dimensional Template Arrays
for Improving Readability

• a mapping technique for arrays with
varying dimensions
– each block on LDM corresponds to

multiple empty arrays with varying
dimensions

– these arrays have an additional
dimension to store the corresponding
block number

• TA[Block#][] for single dimension
• TA[Block#][][] for double dimension
• TA[Block#][][][] for triple dimension
• ...

• LDM are represented as a one
dimensional array
– without Template Arrays, multi-

dimensional arrays have complex index
calculations

• A[i][j][k] -> TA[offset + i’ * L + j’ * M + k’]
– Template Arrays provide readability

• A[i][j][k] -> TA[Block#][i’][j’][k’] 57

LDM

Core #3

I$
16K

D$
16K

CPU FPU

User RAM 64K

Local memory
I:8K, D:32K

Core #2

I$
16K

D$
16K

CPU FPU

User RAM 64K

Local memory
I:8K, D:32K

Core #1

I$
16K

D$
16K

CPU FPU

User RAM 64K

Local memory
I:8K, D:32K

Core #0

I$
16K

D$
16K

CPU FPU

URAM 64K

Local memory
I:8K, D:32K

CCN
BAR

8 Core RP2 Chip Block Diagram

On-chip system bus (SuperHyway)

DDR2
LCPG: Local clock pulse generator
PCR: Power Control Register
CCN/BAR:Cache controller/Barrier Register
URAM: User RAM (Distributed Shared Memory)

Sn
oo

p
co

nt
ro

lle
r

1

Sn
oo

p
co

nt
ro

lle
r

0LCPG0

Cluster #0 Cluster #1

PCR3

PCR2

PCR1

PCR0

LCPG1

PCR7

PCR6

PCR5

PCR4

control
SRAM

control
DMA

control

Core #7

I$
16K

D$
16K

CPUFPU

User RAM 64K
I:8K, D:32K

Core #6

I$
16K

D$
16K

CPUFPU

User RAM 64K
I:8K, D:32K

Core #5

I$
16K

D$
16K

CPUFPU

User RAM 64K
I:8K, D:32K

Core #4

I$
16K

D$
16K

CPUFPU

URAM 64K

Local memory
I:8K, D:32K

CCN
BAR

Barrier
Sync. Lines

Speedups by the Local Memory Management Compared with
Utilizing Shared Memory on Benchmarks Application using RP2

59

20.12 times speedup for 8cores execution using local memory against
sequential execution using off-chip shared memory of RP2 for the AACenc

Software Coherence Control Method
on OSCAR Parallelizing Compiler

 Coarse grain task parallelization with
earliest condition analysis (control and data
dependency analysis to detect parallelism
among coarse grain tasks).

 OSCAR compiler automatically controls
coherence using following simple program
restructuring methods:
 To cope with stale data problems:

Data synchronization by compilers
 To cope with false sharing problem:

Data Alignment
Array Padding
Non-cacheable Buffer

MTG generated by
earliest executable
condition analysis

Performance of Software Coherence Control by
OSCAR Compiler on 8-core RP2

1.00

1.38

2.52

1.00

1.67

2.65

1.00

1.76

2.90

1.00

1.79

2.99

1.00

1.84

3.34

1.00

1.32

2.36

1.00

1.87

2.86

1.00

1.79

2.86

1.00

1.55

2.19

1.00

1.70

3.17

1.07
1.45

2.63

4.37

1.10

1.76

2.95

3.65

1.06

1.90

3.28

4.76

1.01

1.81

3.19

4.63

1.07

2.01

3.71

5.66

1.03
1.32

2.36

3.67

1.05

1.95

2.87

3.49

1.05

1.77

2.70

3.32

1.07
1.40

1.89
2.19

1.02

1.67

3.02

4.92

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

equake art lbm hmmer cg mg bt lu sp MPEG2
Encoder

SPEC2000 SPEC2006 NPB MediaBench

Sp
ee

du
p

Application/the number of processor core

SMP(Hardware Coherence)

NCC(Software Coherence)

Automatic Software Coherent Control for
Manycores

Target:
 Solar Powered

 Compiler power reduction.
Fully automatic parallelization and
vectorization including local memory
management and data transfer.

OSCAR Vector Multicore and Compiler for
Embedded to Severs with OSCAR Technology

Centralized Shared Memory

Compiler Co-designed Interconnection Network

Compiler co-designed Connection Network

On-chip Shared Memory

Multicore Chip

Vector
Data

Transfer
Unit

CPU

Local Memory
Distributed Shared Memory

Power Control Unit

Core

×４
chips

Future Multicore Products
Next Generation Automobiles
- Safer, more comfortable, energy efficient, environment
friendly
- Cameras, radar, car2car communication, internet
information integrated brake, steering, engine, moter
control

Solar powered with more than 100
times power efficient : FLOPS/W
• Regional Disaster Simulators

saving lives from tornadoes,
localized heavy rain, fires with
earth quakes

-From everyday recharging to
less than once a week
- Solar powered operation in
emergency condition
- Keep health

Smart phones

63

Cancer treatment,
Drinkable inner camera
• Emergency solar powered
• No cooling fun, No dust ,

clean usable inside OP room

Advanced medical systems Personal / Regional
Supercomputers

Summary
 To get speedup and power reduction on homogeneous and heterogeneous

multicore systems, collaboration of architecture and compiler will be more
important.

 Automatic Parallelizing and Power Reducing Compiler has succeeded speedup
and/or power reduction of scientific applications including “Earthquake Wave
Propagation”, medical applications including “Cancer Treatment Using Carbon
Ion”, and “Drinkable Inner Camera”, industry application including “Automobile
Engine Control”, and “Wireless communication Base Band Processing” on
various multicores.
 For example, the automatic parallelization gave us 110 times speedup for

“Earthquake Wave Propagation Simulation” on 128 cores of IBM Power 7
against 1 core, 327 times speedup for “Heavy Particle Radiotherapy Cancer
Treatment” on 144cores Hitachi Blade Server using Intel Xeon E7-8890 , 1.95
times for “Automobile Engine Control” on Renesas 2 cores using SH4A or
V850, 55 times for “JPEG-XR Encoding for Capsule Inner Cameras” on Tilera
64 cores Tile64 manycore.

 In automatic power reduction, consumed powers for real-time multi-media
applications like Human face detection, H.264, mpeg2 and optical flow were
reduced to 1/2 or 1/3 using 3 cores of ARM Cortex A9 and Intel Haswell and
1/4 using Renesas SH4A 8 cores against ordinary single core execution.

 For more speedup and power reduction, we have been developing a new
architecture/compiler co-designed multicore with vector accelerator based on
vector pipelining with vector registers, chaining, load-store pipeline, advanced
DMA controller without need of modification of CPU instruction set.

64

	Slide Number 1
	Slide Number 2
	Earthquake wave propagation simulation GMS developed by National Research Institute for Earth Science and Disaster Resilience (NIED)
	Slide Number 4
	Power Reduction of MPEG2 Decoding to 1/4 �on 8 Core Homogeneous Multicore RP-2 �by OSCAR Parallelizing Compiler
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Performance of OSCAR Compiler on IBM p6 595 Power6 (4.2GHz) based 32-core SMP Server
	Slide Number 12
	Earliest Executable Condition Analysis for Coarse Grain Tasks (Macro-tasks)
	Slide Number 14
	Slide Number 15
	Automatic processor assignment in 103.su2cor
	MTG of Su2cor-LOOPS-DO400
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	【W-CDMA Base Band Communication】 �Near Fine Grain Parallel Processing of EAICH Detection Program on RP2 Multicore with 4 SH4A cores
	Generated Multigrain Parallelized Code � (The nested coarse grain task parallelization is realized by only OpenMP “section”, “Flush” and “Critical” directives.)
	Code Generation Using OpenMP
	Multicore Program Development Using OSCAR API　V2.0
	Parallel Processing of Face Detection on Manycore, Highend and PC Server
	Performance on Multicore Server for Latest Cancer Treatment Using Heavy Particle (Proton, Carbon Ion)�327 times speedup on 144 cores�　
	110 Times Speedup against the Sequential Processing for GMS Earthquake Wave Propagation Simulation on Hitachi SR16000�（Power7 Based 128 Core Linux SMP）
	Slide Number 35
	Speedup with 2cores for Engine Crankshaft Handwritten Program on RPX Multi-core Processor
	Model Base Designed Engine Control on V850 Multicore with Denso
	OSCAR Compile Flow for Simulink Applications
	Speedups of MATLAB/Simulink Image Processing on Various 4core Multicores� (Intel Xeon, ARM Cortex A15 and Renesas SH4A)
	Parallel Processing on Simulink Model
	Slide Number 41
	Slide Number 42
	33 Times Speedup Using �OSCAR Compiler and OSCAR API on RP-X�(Optical Flow with a hand-tuned library)
	Power Reduction by Power Supply, Clock Frequency and Voltage Control by OSCAR Compiler
	An Example of Machine Parameters for the Power Saving Scheme
	Power Reduction Scheduling
	Low-Power Optimization with OSCAR API
	Power Reduction in a real-time execution controlled by OSCAR Compiler and OSCAR API on RP-X�(Optical Flow with a hand-tuned library)
	Automatic Power Reduction for �MPEG2 Decode on Android Multicore �ODROID X2 ARM Cortex-A9４cores
	Power Reduction on Intel Haswell �for Real-time Optical Flow
	Automatic Parallelization of JPEG-XR for �Drinkable Inner Camera (Endo Capsule)�10 times more speedup needed after parallelization for 128 cores of Power 7. Less than 35mW power consumption is required.
	Slide Number 52
	Fujitsu VPP500/NWT: PE Unit
	Performance of OSCAR Compiler Software Coherence Control
	Automatic Local Memory Management�Data Localization: Loop Aligned Decomposition
	Adjustable Blocks
	Multi-dimensional Template Arrays for Improving Readability
	Slide Number 58
	Speedups by the Local Memory Management Compared with Utilizing Shared Memory on Benchmarks Application using RP2
	Software Coherence Control Method on OSCAR Parallelizing Compiler
	Performance of Software Coherence Control by OSCAR Compiler on 8-core RP2
	Slide Number 62
	Future Multicore Products
	Slide Number 64

