Horizon 2020 CERBER
European Union funding
for Research & Innovation

HW/SW Cyber-System
Co-Design and Modeling

Julio Karol
OLIVEIRA DESNOS

Karol Desnos (IETR) & Julio Oliveira (TNO) 1

Horizon 2020
European Union funding
for Research & Innovation

Introduction “"""’h

Who are we?

Julio de OLIVEIRA

Position:
* TNO - Researcher &
Innovation scientist
Topic of interest:
* Large, distributed, and
autonomous systems

o ¥ T

IETR
INSA

RENNES

Karol DESNOS

Position:
 INSA Rennes — Assoc. Prof.
* |[ETR - Researcher

Topic of interest:

e Dataflow Programming
 Embedded MPSoCs

Karol Desnos (IETR) & Julio Oliveira (TNO)

2

Horizon 2020 H CERBER
| European Union funding n ro u c I 0 n
for Research & Innovation

Text-book definitions for Cyber-Physical Systems :

e CPS are complex systems integrating:
— Computation processes
— Network of communication
— Physical entities (actuators and sensors, time, mechanics,
temperature, ..., and you!)

 CPSisan engineering discipline, focused on technology,
with a strong foundation in mathematical abstractions.

source: Berkeley CPS website, http://cyberphysicalsystems.org/ ol esnos (1ETR) & Julio Oliveira (TNO) 3

Horizon 2020 H CERBER
| European Union funding n ro u C I o n
for Research & Innovation

Abstraction?

* Tradeoff between level of details and complexity.

Karol Desnos (IETR) & Julio Oliveira (TNO) 4

Horizon 2020 H CERBER
| European Union funding n ro u c I 0 n
for Research & Innovation

What is a model?

e Abstract (mathematically grounded) representation
capturing predictable characteristics of a “system”.

* Models for similar constituents may take many forms.
— To capture different characteristics.
— To be more suitable for a different system size.

Molecules Ideal Gas Law

presiure mol\es te/mp.
pI'/ = nl"\’T

volume gas constant*

*: Physicist way of saying magic number Karol Desnos (IETR) & Julio Oliveira (TNO) 5

Horizon 2020 H CERBER
I European Union funding n ro u c I o n
for Research & Innovation

CPS Co-Design?
e “Old” embedded system co-design flow:

HW SW

Validation &
Verification

Requirements K SystemAwide

& specification

Abstraction
layers

Time to market

 Where are physical concerns?

Karol Desnos (IETR) & Julio Oliveira (TNO) 6

Horizon 2020 H CERBER
European Union funding n ro u c I o n
for Research & Innovation

CPS Co-Design?

* Model-based CPS co-design flow:
HWs SWs Physical

Requirements
& specification

Component
Design

Implementation

\ J

Time to market

* Models enable: system assessment, system validation &

Verlflcatlon (aUtomatEd) SyStem |mp|€ esnos IQBI&C? lio®Oliveira (TNO) 7

Horizon 2020 H CERBER
| European Union funding n ro u C I o n
for Research & Innovation

CPS design is complex

* Many building blocks,

* Separate but intricate optimization objectives,
* Many design constraints.

« Application Constraints « Cost Constraints
* Real-time requirements Engineering cost
* Reliability constraints * Production cost

* Limited size and power

« External Constraints
« Regulation and Standards

 Environmental constraints
Karol Desnos (IETR) & Julio Oliveira (TNO) 8

Horizon 2020 H CERBER
European Union funding n ro u c I 0 n
for Research & Innovation

Course objective

1. HW/SW Cyber-System Co-Design and Modeling
Get a sense of how, why, and which models are
used at different levels and steps of CPS design.

2. HW/SW Cyber-System Modeling Tools
What do tools do to (automatically) build actual
CPS systems from abstract models.

Karol Desnos (IETR) & Julio Oliveira (TNO) 9

Horizon 2020 CERBER

European Union funding
for Research & Innovation

System Level Modeling

Karol Desnos (IETR) & Julio Oliveira (TNO)

10

for Research & Innovation

| System-level Modeling “"""’h

Modeling as an engineering activity

. ; Abstraction
LSRN (Simplification)
=
i Description

2R (Specification)
4

e [\ Operational
& = (Executable)

Karol Desnos (IETR) & Julio Oliveira (TNO) 11

| S, System-level Modeling “"“'3’"

Modeling — Example

Karol Desnos (IETR) & Julio Oliveira (TNO) 12

| S, System-level Modeling “"“'3’"

Why modeling CPS (SoS) is challenging?

1 | medical

: imaging Foa\ !

Which abstraction?

How to describe?

Operational?

su?utaneous
sensing

Complexity!

Karol Desnos (IETR) & Julio Oliveira (TNO) 13

| B System-level Modeling N

for Research & Innovation

What we mean by complexity?

§ Mechanical
Structure

Communications

Navigation

Source: INRIA Karol Desnos (IETR) & Julio Oliveira (TNO) 14

| Bt s System-level Modeling “"““h

Why bother?
Portable
: Multicore
Algorithm Program
+ =» U o mmmn
Multicore
Compiler

Simulator Multlcore Runtime

+ Debugger
+ Profiler

Architecture

Karol Desnos (IETR) & Julio Oliveira (TNO) 15

*
Pl
* x
Y x

T

Horizon 2020
European Union funding
for Research & Innovation

System-level Modeling

CERBER

Why bother?

I —

designer

J—

Analysis
report

I

!J DSL
Def.

DSL
Modeler System
Model
\ (XMI)

\ section 3.3 J

Code
Generator

Target platform

Foe= - - application

’
.
Java ‘
code ' .
;

/

Checker /

Optimizer

\ section 3.4

VM
Simulation
scenario
/B -3
Code _
Generator | — lJ b Simulator designer
Simulator (DYNAA)
Simulator [u
scripts
(e Simulation
model)

results

KaroSpurce P EU:DEMANES projett

European Union funding

I Horizon 2020
for Research & Innovation

System-level Modeling

Why bother?

System Models

4}

Sustainability System
(e.g., smart grid)

Engineers

MEEs
("what-if" scenarios)

Simulation Tool

prediction tool, etc.)

General Public

Polky Makers /

Physical Laws
(economic, myiypmnonw. social)

Nwmlrcs MM
i Scientists

Source: INRIA

(incl. constraint solver,

Software

Energy
Production’ <))
Consumption

System

Karol Desnos (IETR) & Julio Oliveira (TNO)

17

I Horizon 2020

Euroan Ui g System-level Modelin g CERBER

In a nutshell

. | Abstraction
requires o©j

| Description

Operational

Modeling

S~ { CPS, SoS, HW/Sw systems

¥

Tame complexity

complex

one base

Due to multiple views

Communication between stakeholders

Analysis

.

1 Decision making

Implementation

Mission of Modeling Engineer + Obtain a modeling methodology for CPS / SoS

Karol Desnos (IETR) & Julio Oliveira (TNO)

18

System-level Modeling cmmh

Ways to approach system level modeling

Karol Desnos (IETR) & Julio Oliveira (TNO) 19

Horizon 2020
European Union funding

Pl I
X
okl for Research & Innovation

System-level Modeling

CERBER

Approach 1:

Legend:
© Strongly supporting
+ Supporting
— Light conflict
X Strong Conflict

Model for the task in hand

Functionality

z

TECHNICAL
REQUIREMENTS

CUSTOMER
REQUIREMENTS

Scheduling

e-Portiolio

Real instrumentation

Automated feedback

Adapted GUI
Platform independant

Mobile support

Context awareness

Adaptive invironment

& |Enterance best

Reward

o | Exit test

& |Report

o | Activity tracking

Time saving

s

| = Hintuitive GUI

N = llearning style

5
&
w
w
~
~

|Preparatory instruction

W~

w1 | v | & [Thearetical content

-

Teacher availability

w

Availability

&

Scheduling

Nia oo a) v lw IForum
Miwlnlw sl s N chat
Mol o s s o [Comunity

Ease of use

Adapted interface

winialn
a

Real instrumentation

Team work

Learner’s requirements

Reliability of setup

Insight

w

New experiences

(]

Report

Faithfull representation

Connection with theory

w

w

w

w
-

Motivati

-

-

a(nfn
w
-
w

Wider understanding

w e

a e o

User identification

Results interpretation

v

w

A ic reward

=lwlalalvla]alal e v wlvlala s |e | s | » o [Customer importance

Easeofuse| Quality |Quality of setup [Conviniend| Benefits

Teacher's requirements

2|12|5S
0 6 8 06
Setup dificulty (1-10)
Effort level

Automatic assignments

5

2

(SR PO I N P I l‘lu

o onl]{onl oot il

irem Acceptance
REQUITEMENLS |=sessssessesmmmasmssesecsassereesmemasensesmssessessnsnrennnnnns » Te:,t a
Engineering g
System
REQUIFEMENES {==ermsessssssasassassmsansansamsnnsnssnsansansnnans > Syst.em
i Testing
/ neerins
Architecture System
Engineering | TTTTTTTTTTTTTTTTTITT P Integration
s s Testing
Subsystem
Design [r--osososmmmooooos p=| Integration
Testing
Coding (SW) - . i
Fabrication (HwW) [~ UnitTesting

Karol Desnos (IETR) & Julio Oliveira (TNO)

20

CERBER

*
*

3| e System-level Modeling

B for Research & Innovation

Approach 1: Model for the task in hand

7. Procedure

This section describes the steps to be followed by the user in the Oracle Application with
detail screen shots. After successful log in into the Oracle Application the user has to
follow the following navigation to create a manual/standalone invoice in the system.

Prerequisite: Before navigating to the application the user should have following:
User A
» Original copy of the vendor invoice. Requirements |[e=e=seseeesreeecmeemesemecseemenceseeneeseseeeennsrreeaneane > c;eptt'ance
. - ‘estin,
» Copy of the manual PO/WO. Engineering g
» Certificate of completion/ Proof of receipt of goods. \ /
System
\ ReqUIrements |[--s=-ssseceeeceeccsonmecmaneeaacaceecaaacnannns| > Syst.em
. . Testing
Engineering
B suspmodel * Q@‘
Fle Edt Yiew Simulation Format Took Help “
D eEES §BRE |4 (22 nf Homal | BB S S
. ystem
Architecture .
Engineering [77TTTTTTTTTI T s | Integration
& & Testing
\ /
Subsystem
Design ~ [f------moommmmiooee| P Integration
Testing
Coding (SW) . " .
4// Fabrication (HW) [| Unit Testing
IReady 100% lodess i

<?php

namespace SampleApp\Comman;

class ServiceLocator implements ReglstrableInterface
protected §_resources = arrayl);

L

* Szt the specified resource

"

ublic function set(fkey, AbstractResource fresourcel
if (tisset({sthis-=_resources(s

310 o
tthis.»_resources[ikey] = source

v ' A Karol Desnos (IETR) & Julio Oliveira (TNO) 21

for Research & Innovation

| System-level Modeling “""“’h

Model for the task in hand fails

Moore’s Law

™ s
iR 100m 8
§ + Development _&
g © i il @ NET_SendPacket ERROR: NO ERROR
é 100K / : —1m g
% 10K / / 100K % oK
- 1K / 10K S
Major problem for the development Introduction of errors :
productivity Human failure or mis-interpretation
&0, ’:l -7“ .,
o : UO: ‘?& 5;’;""1
o T RN Almost
s - P " . .
4. <KL impossible to
had T optimize at
R 08 oo
B, | & system level
o B

Karol Desnos (IETR) & Julio Oliveira (TNO) 22

European Union funding

ek | Horizon 2020
for Research & Innovation

System-level Modeling

CERBER

Approach 2: Model transformation

A model transformation is an
automated way of modifying and

creating models.

(Best) Example: Compilers

file Analyse View

Instructions

8048094: push
8048085: mov
8048097: sub

804809a: cmp
804809%e: jnz

80480a0: mov
4.8

80480a38: mov
80480aa: sar
80480ad: idiv
80480b0: mov
80480b2: mov
80480b6: mov
80480b9: mov
80480bc: call
80480cl: leave
80480c2: ret

Line 6, Column 27

Help
B® Cc++

ebp
ebp, esp int32_t gcd(int32 t'argl. int32_t arg2)
esp, 0x18 int32_t eaxl
[ebp + 0xc]:32, 0x0
0x80480a5 if (arg2 0) {
eax, [ebp + 0x8]:32 eaxl = gedlarg2, argl % arg2
0x80 else
e D eaxl = argl
edx, eax
edx, Ox1f return eaxl
[ebp + 0xc]:32
eax, edx
[esp + 0x4]:32, eax
eax, [ebp + 0xc]:32
[esp):32, eax
0x8048094

Assembly Code Source Code

Karol Desnos (IETR) & Julio Oliveira (TNO)

23

Horizon 2020
European Union funding

Pl |

* *

T :
for Research & Innovation

System-level Modeling

CERBER

Model transformation and the design process

System Design
Model

Horizontal Model Transformations >
Model generation
) S > System V&V
& —— Model

Design
rules

SUOIJEWJOJSUBI] [IPOA [EIIIIBA

| S—
Back-Annotation

\ Refine

Use f
Model generation Formal
>

) W— Architecture V&V methods
V4 N Model

Architecture
Design
Model

€
\ Refine
Design

rules

N
Back-Annotation

4 ”m K_)
Model generation
Formal

Component ﬁ Component
Design V&V
Model (—r)_ Model
b Back-Annotation T K_)

i
Design
rules Code Test
Generation Generation
I
\"4

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases, Monitors,
Fault Trees, etc.)

methods

Foundations of

\Il model transformations

Source: Daniel Varro, CSMR2012

Karol Desnos (IETR) & Julio Oliveira (TNO)

24

| St System-level Modeling cmmh

Approach 3: Multi-aspect modeling

A system aspect, or system view, is a way
to look at or describe a system as a
whole. Each system aspect has its own
associated semantic domain and can
provide
an exhaustive description of the system, but
only from that particular point of view.

|

i

——
e ——

i |

Co-modeling

e —

: — Test/verif
- —J Yoy

Karol Desnos (IETR) & Julio Oliveira (TNO) 25

for Research & Innovation

| B System-level Modeling ““""‘h

Examples

UML 2.0 —————=7]
4
14+ UML 1.4
A industrialization
U M L 1 . :-.:—.:—.—:::::_.—_:::.-::::_: :
T revision wex |\ nb
s |)
OMG Acceptance, Nov 1997 —-——-——— UML 1.1 =
Final submission to OMG, Sep ‘97 T |
First submission to OMG, Jan ‘97 | standardization
UML partners — - UML10 o
t
Web - June "96 UML 0.9
DOPSLA 08 ——————of—— Unified Method 0.8
Other methods oMT OOSE
Methods Source: Emertxe Ltd

war!

M~ARTE

Karol Desnos (IETR) & Julio Oliveira (TNO) 26

for Research & Innovation

| B System-level Modeling N

Advantages of multi-aspect modeling

Deal with one aspect at a time

—[Tame complexity] Every aspect contributes to one system maodel

Interdisciplinary design trade-offs

Multi aspect modeling

—— [Co-modeling] Tooling profits from multi-domain information

Increased (rejusability of models

- [Productivity }* More flexible evaluation of design alternatives

Explicit (formal?) interdependency between aspects

Challenges ‘ Neoteric (new + isoteric) views

Karol Desnos (IETR) & Julio Oliveira (TNO)

27

| B System-level Modeling 3’"

An example from CERBERO 1/3

Tas k as pect remoteDataAcq: TaskGroup collectSensorData: Task

p_out Eg b[. p_in

sensorData

Behavior aspect @l :

ssssss

getSensorValue: Algorithm L s . 4
p3
(---------------
p1 = (int16) mappedTo.adcl.getValue(),

Karol Desnos (IETR) & Julio Oliveira (TNO) 28

°
ek Horizon 2020 CERBER
¥ A System-level Model
| e s ystem-ieve odaelin
Physical aspect
myHost: PC
lan

wian
p1: Processor mem: Memory wian: CommHw — myWifi Channel
nrCores =1 memSize = 1.0e6 8] protocol = Wifi
opModes = {Hib,On} opModes = {OffOn}
powerNeeds = {0.01,0.1}[(W] powerNeeds = {0,005} W]
Ops = {0,1e6) [/s] bandwidths = {0,1e6} [B/s]
FLODS =z (O.IeS) [’S]

wian
ck1; Clock batl: Battery adc1: ADC ’|\
offset =23 s] capacty =25 {Ah] nrBis =12 i
rate =101 nominalVolkage = 12 M maxRange =50 ™
driftModel = none chargeModel = none offset =2 [mV]

Karol Desnos (IETR) & Julio Oliveira (TNO)

29

| B System-level Modeling 3"‘

An example from CERBERO 3/3

Mapping view

..

remoteDataAcq TaskGroup

oo

S

Karol Desnos (IETR) & Julio Oliveira (TNO) 30

| Horizon 2020

European Union funding
for Research & Innovation

System-level Modeling

o

Using the models together to assess KPls

uonndaxa |apow

task model
behavioural model

physical model

+ T P mapping

temporal behaviour

feedback

REQUIREMENTS

temporal behaviour

power requirement power requirement
PR
epenaability

<other performance indicators>

dependability

<other perf. indicators>

Karol Desnos (IETR) & Julio Oliveira (TNO)

31

| System-level Modeling “"“"h

for Research & Innovation

Some CERBERO contributions (expected)

-1 Explicit (formal?) interdependency between aspects

\| Research: Aspects can also be used to formalize the
dependency between other aspects.

|| Research: A (semantic) intermediary representation
| layer as connection point between modeling aspects

-' (modeling languages)
Challenges

—| Neoteric (new + isoteric) views

=

Research: How to model reconfigurability ?
Adaptivity ? Scalability and Cardinality ?

| Research: How to model key performance indicators in
a more formal way ?

Karol Desnos (IETR) & Julio Oliveira (TNO) 32

Component level > Outline “"“‘*&"

Component level
SW/HW (co-)design

1. State-of-the-Art

Karol Desnos (IETR) & Julio Oliveira (TNO) 33

| s Component level > State of tH’é‘“&'E

Need for a new HW/SW design approach!

Lines of code/chip
x2 every 10 months

Transistors/chip
X2 every 18 months

Software
Productivity Gap

Lines of code/day
X2 every 5 years

Software product'w'\ty

| | | | | | | | |)
1990 1995 2000 2005 2010 2015

Source: ITRS & Hardware-dependent Software, Ecker et al., Springey’ Denos (ETR) &Julio Oliveira (TNO) 34

| s Component level > State of th‘@"‘g?'ﬂ

Typical HW/SW component

Heterogeneous
Multiprocessor System-on-Chip (MPSoC)

Customized
Processors for E E E E

Specific Functions
"Generalist" Main @ Main

Processors Proc. I Proc.

Reconfigurable
Logic

On-Chip Interfaces with
Interconnect(s) Peripherals External World

Karol Desnos (IETR) & Julio Oliveira (TNO) 35

Globally Shared
Storage Space

| s Component level > State of tH@“&'ﬂ

Typical development flow

corclmall . Cﬁ% | =
e 3§

Simulator + Debugger + Profiler OS

’ f ‘ PESs e(S)

-»QQ-»QQ-» >

Synthesizer
& ROth)é sssss (IETR) & Jullione 36

N

| s Component level > State of tH’é‘“&'E

C Language is:

e Good for abstracting core architecture
 Amount of registers
 Number of pipeline stages
* Instruction parallelism

* Bad for expressing coarse-grain parallelism
* Inspired by Turing Machine
* Global state in a program

Karol Desnos (IETR) & Julio Oliveira (TNO) 37

| s Component level > State of tﬁ’é“&'é

VHDL/Verilog Languages are:

* Good for abstracting
* Transistors
* Analog concerns (signal propagation time)

e Bad for abstracting
» Software concerns
e ... (more reasons in HLS and HW courses)

Karol Desnos (IETR) & Julio Oliveira (TNO) 38

| s Component level > State of th‘@“g?'ﬂ

What we want?
Simulator

+ Debugger
+ Profiler

C. Portable

Algorithm Program
+ -» {3y = nnnn

Cross-Layer

DSE tool 4 ‘

Architecture

39

ey, Component level > Outline “""“*}"

Component level
SW/HW (co-)design

2. Models of Computation

source: J.E. Savage. Models of computation. Addison-Westey Readingz MA) 1998 40

Component level > MoCs “"“‘*5"

| s
for Research & Innovation

Model of Computation (MoC)

a.k.a. programming paradigm

Definition:
* A set of operational elements that can be composed to describe the
behavior of an application.
= Semantics of the MoC

Objective:
* Specify implementation-independent system behavior.
* Ease specification, implementation, verification of system properties.

How:
 MoCs act as the interface between computer science
& mathematical domain.

& A MOC iS not a |anguagﬁ| DMIETR)&JuIioOIiveira (TNO) 41

| St s Component level > MoCs “"“‘*h

Language

Definition:
* A set of textual/graphical symbols that can be assembled respecting a
well defined grammar to specify the behavior of a program
— Syntax of a the language

Objective:
* Ease system description and maximize developer productivity.
* Be developer-friendly: readability, reusability, modularity, ...

How:
e Languages are the interface between the programmer
& the Machine (through the complier).

A Language implements one or several MoCs

Karol Desnos (IETR) & Julio Oliveira (TNO) 42

| Component level > MoCs ““%

MoC Semantics and Language Syntax
* UML implements object-oriented semantics
* C++/Java implements object-oriented semantics

* They share semantics but not syntax

UML Java

BankAccournt

public class SavingsAccount
extends BankAccount {

owner : String
balance : Dollars

deposit { amount : Dollars)

withorawal (amount | Doliars)} private int annuallInterestRate ;
.’A\
I public void withdrawal (int v) {
CheckingAccount SavingsAccount }
insufficientFundsFee : Dollars annuallnterestRate | Percentage
processCheck { checkToProcess : Check) depositMonthlylnterest ()
withdrawal { amount : Dollars) withdrawal {amount : Dollars)

43

| S Component level > MoCs “““"h

A few MoCs

Finite State Machine MoCs Glass FSM
Semantics Pour beverage
* States

* Transitions (possibly conditional)

Used for Drink

drop drop

* Sequential logic
e System-level behavior

Broken
 Communication protocols

* ... Be sad

Property
* Non-deterministic, sequential

Karol Desnos (IETR) & Julio Oliveira (TNO) 44

| S Component level > MoCs “““"h
A few MoCs
Petri Nets

Semantics
e Places
* Transitions & Arcs

Used for
* Synchronization protocols
* Parallel computations

Property
* Parallelism
* Liveness, Boundedness, Reachability

Karol Desnos (IETR) & Julio Oliveira (TNO) 45

| S Component level > MoCs “"""‘h
A few MoCs

Discrete Event MoCs

Semantics
 Modules

* Signals

* Timed events
* Global clock

Used for A A

* Hardware Description | c """ T €

e “System” Simulation —
iIme

Properties t

* Timed, Non-deterministic (if badly used)

rol Desnos (IETR) & Julio Oliveira (TNO) 46

| St s Component level > MoCs “"“‘*&"
A few MoCs

Kahn Process Network

Semantics Used for Properties
* Actors & ports ¢ Parallel computations <« Deterministic
* FIFO queues * Stream processing e Untimed

[:ECMDHE]

G. Kahn. The semantics of a simple language for parallel programffiing: TEip" 1g74.c Olvera (TNo) 47

= Component level > MoCs “"""’h

A few MoCs
Kahn Process Network (KPN)

Determinism

‘Sort
00000> even

odd

Process sort(in int i, out int even, out int odd) {
int value = i.read(); // Blocking
if(value $ 2 == 0)
even.write (value) ;
else
odd.write(value) ;

Karol Desnos (IETR) & Julio Oliveira (TNO) 48

= Component level > MoCs “"""’h
A few MoCs
Kahn Process Network (KPN)

Determinism

Sort | blocked 'Igterleavg

odd gb

Process inteleave(in int a, in int b, out int o) {
static bool = true;
int value = (bool)? a.read() : b.read():;
bool = !'bool;
o.write(value) ;

Karol Desnos (IETR) & Julio Oliveira (TNO) 49

Component level > MoCs

A few MoCs

Dataflow Process Network (DPN)

Non-Determinism

Timeout

n

oo

Process inteleave(in int a,

b

terleave
o[

static bool = true;

int value = (bool)? a.read()

bool = 'bool;

if (no timeout) o.write(value);

o

in int b, out int o) {

: b.read();

Karol Desnos (IETR) & Julio Oliveira (TNO)

| St s Component level > MoCs “"“‘*5"
A few MoCs

Synchronous Dataflow

Semantics Used for Properties

* Actors & ports ¢ Parallel computations ¢ Liveness

* FIFO queues e Stream processing * Boundedness
* Deterministic

e Untimed

Yy

D
o

Source: E. Lee and D. Messerschmitt, “Synchronous data flow”, Pro¢e&dings of the TEEE” 1987. -1

Component level > MoCs “"“‘*5"

MoC Properties are important.

You need to know them to select the MoC suiting your needs

Non-determinism

Feature SDF ADF IBSDF DSSF PSDF PiSDF SADF SPDF DPN KPN
Expressivity Low Med. Turing
Hierarchical X X X X
Compositional X X X
Reconfigurable X X X X X X
Statically schedulable X X X X
Decidable X X X X (X) (X) X (X)

Variable rates X X X X X X X

SDF: Synchronous Dataflow

ADF: Affine Dataflow

IBSDF: Interface-Based Dataflow

DSSF: Deterministic SDF with Shared Fifos
PSDF: Parameterized SDF

PiSDF Parameterized and Interfaced SDF

SADF: Scenario-Aware Dataflow

SPDF: Schedulable Parametric Dataflow

DPN: Dataflow Process Network

KPN: Kahn Process NetWairdoos (IETR) & Julio Oliveira (TNO) 52

ey, Component level > Outline “"“‘*}"

Component level
SW/HW (co-)design

3. Models of Architecture

Karol Desnos (IETR) & Julio Oliveira (TNO) 53

| St s Component level > MoAs “““‘5"

Models of Architecture

Definition:
* Formal representation of the operational semantics of networks of
functional blocks describing architectures.

Abstraction ¢ VHDL/Verilog
* SPIRIT IP-XACT
* SystemC TLM
* UML Marte
 AADL

* S-LAM

<€

Source: Kienhuis, B., Deprettere, E. F., Van Der Wolf, P., & Vissers, K. A methodology to design
programmable embedded systems. In Embedded processor desigti‘chaltengésspringer, 2002. >4

Component level > MoAs “"“'5"

Disclaimer:

The topic of MoA is not as extensively covered in the
scientific literature/industrial tools.

ldeas presented in following slides are based on
recent work by Pelcat et al.

Unfortunately, these ideas can not (yet) be
considered as a globally accepted reference.

M. Pelcat et al., "Models of Architecture: Reproducible Efficiency Evaluation for Signal Processing
Systems," IEEE Workshop on Signal Processing Systems (SiPS), Datlas,0F%p2016zppo 4241262 55

| B, Component level > MoAs «3"‘

Models of Architecture

Definition:
* Formal representation of the operational semantics of networks of
functional blocks describing architectures

Yes, but

 The SDF MoC is a formal representation of the operational semantics
of networks of functional blocks describing applications

 What if application = architecture?

 What if we do not want to model the architecture as a network?

 We need a more precise definition for MoAs!

56

| B oy Component level > MoAs “““"h

Models of Architecture

Definition

* an abstract efficiency model of a system architecture that
provides a unique, reproducible cost computation, when
processing an application described with a specified MoC.

Algo G conforms to MoC Archi H conforms to MoA

Deployment

One and always the same performance number

Karol Desnos (IETR) & Julio Oliveira (TNO) 57

| B oy Component level > MoAs ““""‘h

LSLA MoA Example

Linear System Level Architecture (LSLA)

* A Model of Architecture

* Computing additive costs from application activity
* That can be used, for instance, to predict energy

2x+0 | M 3x+0
10x+0

2x+1 PE4 3x+2

Karol Desnos (IETR) & Julio Oliveira (TNO) 58

| e Component level > MoAs c‘“""‘h

LSLA MoA Example

Application Activity for cost computation
— AA is the amount of effort to execute an application
— From the MoC, we derive
* processing and communication tokens ‘ (e.g. tasks and messages)
e processing and communication quanta = (e.g. cycles and Bytes)

Karol Desnos (IETR) & Julio Oliveira (TNO) 59

Component level > MoAs

n 2020
ion funding
tion

Horizo
nnnnnnnnn ni
for Research & Innova

LSLA MoA Examplle
Process

C(bﬂ 4+2+20+5+12+3+3+8 5

| 4
2x+0 PE1

COS; 2*(2.) 'FQ
x+0 10x+0

2x+1

| St s Component level > MoAs “"“'?h

LSLA MoA example

Experiments

* On an ARM big LITTLE architecture

* Running a stereo matching application
* Asimple LSLA reaches 85% of fidelity

energy(J)
30 .

/ Ordered energy measurements P
251 §
me Corresponding LSLA energy estimations ;_,'ff
0 el -
II

15 |
‘llba i i
10} |
Y AL S Ao [F‘
5 B mﬂu“ﬂ_ﬂi.‘lr“.-1 . ‘||!"‘r"‘"”| I _
wﬁmjh !
O q I I l : L I 1
0 200 400 600 800 1000 1200 1400 4600 . .. o

experiment index after reordering

Horizon 2020 H CERBER
European Union funding o n c u S I O n
for Research & Innovation

Models

e offer various levels of abstraction for designing
system-of-systems, system, SW and HW components

e are backed by mathematical models, providing a
base for verification of system properties

e are based on semantics can be translated into actual
implementation. (cf. next lecture)

62

