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The Speakers

Alfonso Rodríguez has a MSc on Industrial Electronics (2014) and a PhD on
Electrical and Electronics Engineering (2020), both by Universidad
Politécnica de Madrid (UPM). Currently, he works as an Associate Professor
at UPM and carries out its research activity as a member of the Center of
Industrial Electronics (CEI-UPM). His main research interests are high-
performance embedded systems, reconfigurable computing, open computer
architectures (e.g., RISC-V), and edge AI/ML.
Contact: alfonso.rodriguezm@upm.es

Andrés Otero is a Telecommunications Engineer from the
University of Vigo, where he graduated with Honors in 2007. He
completed a Master’s and Doctorate in Industrial Electronics from
the Universidad Politécnica de Madrid (UPM) in 2009 and 2014,
respectively. Currently, he serves as an Associate Professor at
UPM. His areas of interest are embedded and/or reconfigurable
systems, evolutionary computation, and machine learning at the
edge. Contact: joseandres.otero@upm.es
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Many Other Contributors

MSc students: Alberto García, Guillermo San Llorente, Javier Laserna…

External Collaborations with Prof. Lukáš Sekanina (Brno Univ. Technology) 
and Prof. José Luis Nuñez-Yañez (Linköping University)

Eduardo de la Torre

Javier Mora Rubén Salvador
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CEI is a Research Center that belongs to the Universidad Politécnica de Madrid. We 
are located at the E.T.S.I. Industriales, in the city center of Madrid.

Centro de Electrónica Industrial (CEI)
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Centro de Electrónica Industrial (CEI)

• Power Converters

• Power Supply Architectures

• Modeling & Simulation 

• Reconfigurable Embedded Systems

• Sensor Networks & Internet of Things

• Embedded Intelligence

Digital Embedded Systems

Power Electronics

• 48 Full-time researchers

• 18 Doctors (Faculty, Contracted researchers)

• 30 Full-time Students (18 Doctorate, 12 Master)

• 19 Part time, sponsored students

• 3 Administration & Technicians

Some Numbers
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• 7 Professors
• Teresa Riesgo*, Eduardo de la Torre, Yago Torroja , Jorge Portilla, Andrés Otero, 

Gabriel Mujica, and Alfonso Rodriguez.

• 8 Full-time PhD Students: 
• Jaime Señor, Juan Encinas, Daniel Vázquez, Juan Gallego, Junjiao Sun, Rogelio 

Hernández, Fernando Pérez, Luis Waucquez, Alejandro Redondo.

Digital Embedded Systems @CEI – Who we are?

*: On temporary leave
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Digital Embedded Systems – Research Lines

Internet of Things

Networked embedded systems 
to face challenges related to the 

era of smart and sustainable 
cities, comprising the integration 
of heterogeneous hardware and 

software technologies. 

Reconfigurable Hardware

Developing embedded parallel 
computing platforms based on 

HW acceleration and design 
tools, to obtain energy-efficient, 
scalable, and run-time adaptive 

solutions.

Machine Learning at the 
Edge

Embedded circuits for near-
sensor decision making, based 
on HW/SW embedded signal 

processing and machine learning 
techniques
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Self-Adaptive Computing Systems

A Self-adaptive computing system is a system capable of automatically change its structure,
functionality and/or parameters, in response to changes in its operational environment, user
demands or self-sensing information. Self-adaptive technologies are needed in the ubiquitous
and pervasive computing era since unpredictable changes in the environment makes
impossible to address at design time all scenarios that can happen at run-time.

Taxonomy of self-adaptation

When?

Why?

Where?

What?

How?
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Triggers for Adaptation

ENVIRONMENTAL AWARENESS: Influence of the environment on the
system, i.e., daylight vs. nocturnal, radiation level changes, etc.
Sensors are needed to interact with the environment and capture
conditions variations.

USER/EXTERNALLY-COMMANDED: System-User interaction, i.e. user
preferences, commands from SoS managers (the boss), etc.
Proper human-machine interfaces are needed to enable interaction and
capture commands.

SELF-AWARENESS: The internal status of the system varies while
operating and may lead to reconfiguration needs, i.e. chip temperature
variation, low battery.
Status monitors are needed to capture the status of the system.
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Types of Adaptation

FUNCTIONALITY-ORIENTED: To adapt functionality because the system
mission changes, or the data being processed changes and adaptation is
required. It may be parametric (a constant changes) or fully functional
(algorithm changes)

EXTRA-FUNCTIONAL REQUIREMENTS-ORIENTED: Functionality is fixed,
but system requires adaptation to accommodate to changing
requirements, i.e. execution time or energy consumption.

REPAIR-ORIENTED: For safety and reliability purposes, adaptation may be
used in case of faults. Adaptation may add self-healing or self-repair
features. e.g.: HW task migration for permanent faults, or scrubbing
(continuous fault verification) and repair.

A

BC

13
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Self-* Properties

SELF-AWARENESS: ability of a system to be aware of itself
states and behaviors, i.e., to monitor its resources, state
and behavior.

CONTEXT-AWARENESS: ability of a system to be aware of 
its operational environment.

Self-aware computer systems are capable of adapting their behavior and resources thousands of
times a second to automatically find the best way to accomplish a given goal despite changing
environmental conditions and demands. These goals can be achieved by monitoring the system
(self) and its environment (context).
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Self-* Properties

SELF-CONFIGURATION: capability of reconfiguring automatically
and dynamically in response to changes.

SELF-PROTECTING: capability of detecting security breaches and
recovering from their effects.

SELF-OPTIMIZING: capability of managing performance and resource
allocation in order to satisfy the requirements of different users. End-
to-end response time, throughput, utilization, and workload are
examples of important concerns related to this property.

SELF-HEALING: Is the capability of discovering, diagnosing and reacting to
disruptions. It can also anticipate potential problems, and accordingly
take proper actions to prevent a failure.
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Adaptation Loop

Adaptation 
Monitors

KPI models

Adaptation 
manager

Adaptation 
engine

Adaptation 
fabric

Life-cycle of a self-adaptive system should not be stopped after its development and initial set up.
The cycle continues after installation to evaluate the system and respond to changes at all time.
Self-adapting systems embodies a close-loop mechanism, called the adaptation loop.

A self-adaptive system evaluates its own
behavior and changes its own performance
when the evaluation indicates that it is not
accomplishing what the system is intended
to do, or when better functionality or
performance is possible.
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Research Question

Adaptation 
Monitors

KPI models

Adaptation 
manager

Adaptation 
engine

Adaptation 
fabric

Is it possible to build adaptation managers based on Evolutionary 
Algorithms? 

Evolutionary Algorithms can be
implemented on-chip and used as black-
box optimization tools, enabling self-*
properties and continuous-learning
capabilities.

Targeting CPS Systems
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PRINCIPLES OF 
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Evolutionary Design: preliminary example

Natural Evolution by Charles Darwin

From an amoeba to a computer engineer: Random changes in 
our chromosomes, the sexual reproduction and the sexual 
selection for the adaptation to the environment.
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Evolutionary Systems

Evolutionary Systems are systems that rely on the Evolutionary Design Techniques (and
by extension, on the Darwinist evolutionary principles) during execution time.

One or more populations of individuals competing for limited resources

The notion of dynamically changing populations due to the birth and death of
individuals

A concept of fitness which reflects the ability of the individual to survive and
reproduce.

A concept of variational inheritance: offspring closely resemble their parents,
but they are not identical.

These principles lead naturally to the view of systems that, given particular
initial conditions, follow a trajectory over time through a complex evolutionary
state-space. This process is guided by an Evolutionary Algorithm.
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Evolutionary Algorithms (EA)

Evolutionary Algorithms (Eas) are metaheuristic optimization algorithms inspired by Darwin’s theory
of evolution. EAs follow a progressive search in which new solutions are explored by combining and
modifying previously tested solutions, favoring those which present a more desirable behavior, and
discarding those that don’t.

Normally, the EA uses an abstract representation of the
solution, typically described as a sequence of bits, numbers,
or symbols. This representation is known as genotype or
chromosome of a solution, with each element in the
sequence known as a gene.
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Evolutionary Algorithms

• First, an initial population of a certain number of candidate solutions is chosen, typically randomly.
• Then, an iterative process starts in which the following operations are applied to the population:

• Selection of the best individuals in the population based on their fitness, which will be the 
parents for the next generation.

• Crossover or recombination, where a new child is obtained by combining parts of the 
genotype of two or more parents.

• Mutation of a genotype, in which some randomly selected genes of the genotype are 
modified, either by flipping them (in the case of binary genes), adding a random value, or 
replacing them by a random value.

• Finally, the evolution is terminated after either a certain number of iterations (or generations) have 
elapsed, a target fitness value has been reached, or another termination criterion is reached. The 
best individual in the resulting population will be considered as the result of the evolution.

Fitness:

∑|aij – bij|
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▪ Crosssover:

▪ Mutation:

▪ Selection: It may consist in picking the best individuals and discarding the
rest (elitist selection), picking two individuals at random and choosing the
one with best fitness (tournament selection), or using uniform random
distribution proportional to the fitness of the individuals (roulette-wheel
selection).

Evolutionary Algorithms: main operators

1-point Crossover 2-point Crossover Uniform Crossover 2D-Crossover
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Taxonomy of Evolutionary Algorithms

Although similar at the highest level, each of these varieties implements an evolutionary
algorithm in a different manner. The differences include almost all aspects of evolutionary
algorithms, including the choices of representation for the individual structures, types of
selection mechanism used, forms of genetic operators, and measures of performance.
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▪ In Evolutionary Strategies (ES), the genotype consists of a sequence of real-valued 
genes, each of them describing a different parameter of the system to optimize. 

▪ Mutation consists in adding a normally distributed random value to all genes in the 
genotype (this random value might be identically distributed for all genes or have 
an ellipsoidal shape on Rn). 

 A distinctive feature of this EA is the fact that the standard deviation of this normal distribution may 
be included as part of the genotype, so that this EA not only evolves the individuals but also the 
degree in which they may change during the evolution. 

▪ Originally, this EA did not use crossover, relying exclusively on mutation and 
selection; this is denoted as (1+λ)-ES, indicating that each generation has 1 parent 
and λ children.

▪ Implementations also exist that perform crossover by averaging two individuals; 

these are known as (µ+ λ)-ES or (µ,λ)-ES ( with µ  being the number of parents) 
depending on whether the parents participate in the selection or are systematically 
discarded.

▪ Selection is deterministic and is implemented in one of two ways:
 The first allows the N best children to survive, and replaces the parents with these children. 

 The second allows the N best children and parents to survive. 

Evolutionary Strategies (ES)
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▪ In Evolutionary Programming (EP) was developed by Fogel in 1966, and
traditionally has used representations that are tailored to the problem
domain.

 For example, in real-valued optimization problems, the individuals within the
population are real-valued vectors.

▪ The mutation mechanism consists in adding a normally distributed
random value to each gene, but, unlike in ES, the standard deviation of
this value is made proportional to the fitness of a solution, so that
solutions with a lower (better) fitness will be subject to smaller mutations
than those with a higher (worse) one.

▪ Crossover is not used at all.

▪ This EA variant uses a (µ + µ) strategy in which a population of 2µ
individuals is reduced to µ parents by performing a tournament selection:
each new parent is obtained by randomly choosing two or more
individuals of the population and picking the best of them

Evolutionary Programming (EP)
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▪ A more flexible variant of EA is the genetic algorithm (GA), which has become the
most widely used form of EA due to its versatility and relative independence with
the problem to optimize.

▪ Unlike ES and EP, the genotype in GA is typically represented as a sequence of bits,
with each feature of the system being encoded in a specific group of bits.
Representations in the form of sequence of integers is also possible.

 This encoding provides more flexibility than ES, since it can not only represent real-valued system
parameters, but also the choice of a specific option within a range (e.g., indexed functions or
modules, multiplexer settings, presence or absence of specific features…)

▪ Mutation in GA usually consists in randomly selecting a certain number of bits and
flipping their value. This more closely approximates biological mutation, which
affects a single base pair rather than the whole gene describing a single feature
(with each gene typically spanning several thousands of base pairs).

▪ In addition to mutation, most implementations of GA heavily rely on crossover,
unlike ES, which rarely uses it, or EP, which does not use it at all.

Genetic Algorithms (GA)

The flexibility of this type of EA has made it a very popular 
choice for most evolvable systems.
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▪ An EA variant that is often used in the field of evolutionary computation is genetic
programming (GP).

▪ GP is specifically oriented to the design of software functions. As such, the genotype
is represented as a tree structure, with each node in the tree representing a basic
function (such as addition, subtraction, multiplication…). This type of structure
allows the representation of arbitrary expressions as used in mathematical or
computing contexts;

▪ The crossover mechanism used by GP is very particular to this EA variant: it consists
in swapping subtrees between two trees. This results in genotypes potentially
growing to arbitrarily large sizes, which would make some solutions impossible to
implement in systems with limited resources, so care must be taken to limit the
length of the tree (for example, including it as factor for the fitness computation).

Genetic Programming (GP)
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Evolutionary Design: first example

An interesting example by NASA

Reliable and predictable results.

Crazy unexpected good results

Rely on evolutionary algorithms to do our work as engineers!

https://en.wikipedia.org/wiki/Evolved_antenna
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Evolutionary Design: advanced example

KRIEGMAN, Sam, et al. A scalable pipeline for designing reconfigurable 
organisms. Proceedings of the National Academy of Sciences, 2020, vol. 117, no 4, 
p. 1853-1859.
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Evolvable Hardware Systems

Evolvable hardware provides an unconventional methodology for the design of digital circuits: rather
than designing a circuit with knowledge of the problem that needs to be solved, a circuit is “trained” by
providing an example problem and the desired solution. For this training, an evolutionary algorithm is
employed.

The EA would modify random parts of a circuit until its response to a certain input is close enough to the
desired output. This permits the automatic design of circuits for problems whose general solution is
unknown, but for which it is known what the solution for a specific “training problem” should be.

D
IF

Fitness:

∑|aij – bij|

EVOLVE
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Evolutionary Design: offline and online

Evolutionary Design techniques can be applied offline and online

OFFLINE: As a design tool

ONLINE: Integrating the evolutionary algorithm in the final
system (i.e., circuit) enables continues run-time self-adaptation.

A reconfigurable fabric is required

Adaptation
Algorithm

Environment

User

System
Conditions

Configuration

Evolutionary Algorithm
Reconfigurable HW

Dynamic and Partial 
Reconfiguration
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State of the Art on Evolvable HW

▪ VRC Architecture (Brno University)
 Evolution friendly

 Processing capability ?

Cartesian Genetic Programming Dynamic Partial Reconfiguration

▪ Evolvable Neural Network (EPFL)
 Based on Xilinx Modular Design Flow

 Adaptable network topology

▪ HERA (Politecnico di Milano)
 Based on Cartesian Genetic Programming

 Parametric Reconfiguration of the LUT Equations

High Reconfiguration 
Overhead

Reduced Flexibility

▪ Is a form of Genetic Programming for 
the design of combinatorial hardware

Virtual Reconfigurable Circuits
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CLASSIC EVOLVABLE 

HARDWARE: APPLICATION 

TO IMAGE PROCESSING
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Evolvable Hardware for Self-* Image Processing

Fragment of a PE

PE

Dynamic
Reconfiguration

Fitness
Evolutionary

Algorithm

It tries to solve a problem
whose model is unknown, and
tries to find a solution for the
model, given the REFERENCE
and a TRAINING input image.

Reconfigurable Systolic Array
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EH Architecture - Processing Elements

▪ PE – DPR Library
 1 element per routing combination

 Different PE in:

• Functionality (FB)

• Interconnection

 16 Different Processing Elements

PE Function
0 N + W
1 N << 1
2 W << 1
3 N +S W
4 N +S N
5 W +S W
6 (N + W) >> 1
7 255
8 N >> 1
9 W >> 1
10 N
11 W
12 max(N,W)
13 min(N,W)
14 N –S W
15 W –S N

FB Function

0 x + y
1 x << 1
2 x +s y
3 ( x + y ) >> 1
4 255
5 x >> 1
6 x
7 max(x,y)
8 min(x,y)
9 x –s y

Inputs

Outputs

▪ PEs
 Functional Block (FB)

 Flip-Flop

 Routing Logic

 PE-FB mapping

• Allows certain data front adaptation

Versions with parametric reconfiguration (fine-grain) are 
also available 
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Application – Image Filtering

▪ Input to the Evolvable Array
 Raster – scan order @ clock rate

 3×3 window (9 inputs)

 Evolution searches the routing 
“input pixel → PE”

Salt and
Pepper noise

Burst Noise

Edge 
Detection
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Evolutionary Framework

▪ Inspired from CGP
 (1+8) Evolution Strategy

▪ Chromosome

▪ Random Initial Population

▪ Selection

 Parent → Fittest individual

 Elitism enabled

▪ Variation operator

 Mutation

• Over k randomly selected genes

– Random uniform 0 – 8 for input genes

– Random uniform 0 – 15 for 
functionality genes

▪ New population

 Parent + Mutants

BABA PEPEInMuxInMux + ,,,,, 001 
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Evolutionary framework inspired from Cartesian 
Genetic Programming
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S&P
Noise

Burst
Noise

Edge
detect

S&P +
Edge

Training Result Reference Input Output

Systems should be adaptable and generalizable
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Results of a large array with very noisy reference

With these two inputs …. We get this output

• Noise-agnostic physically-scalable evolvable hardware
• World record in evaluations/second (> 145.000)
• A good filter, in 1 to 2 seconds, with no DSP eqs. behind!
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Evolution for increased fault tolerance (Self-Healing)

A 4x4 recovers from 2 faults in average

A 7x7 recovers from 12 faults in average
Lifetime of the system extended 6 times

Example of evolution with accumulated faults (threshold at 2x initial fitness)
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Scalable Evolvable Hardware – Redundant Cores

Mission Time

▪ Independent → Task Level Parallelism

▪ Parallel → Triple Multiple Redundancy 

▪ Cascade
 Collaborative

 Independent

 Redundant

▪ Bypass → Self-healing

Evolution Time

▪ Independent → sequential

▪ Parallel → Accelerate Evol.

▪ Cascade
 Separate/Single fitness unit

 Sequential/Interleaved

▪ Imitation → Self-healing (Bypass)
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Scalable Evolvable Hardware – Scalable Cores

Single Evolvable Core

Hardwired Multiplexers
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Evolvable Hardware– Demo

https://www.youtube.com/watch?v=eVqfQAer_gs

▪ On a Virtex-5

▪ Autonomous 
Adaptation!

https://www.youtube.com/watch?v=eVqfQAer_gs
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Neuroevolution

Evolutionary Algorithms (EA) as the optimization and solution searching tool.

Neuroevolution consist in combining ANNs and EAs. It includes techniques to
create neural network topologies, weights, building blocks, hyperparameters, and
learning algorithms.

Artificial Neural Networks (ANN) are computational 
models inspired by the structure and physiology of the 

human brain, aiming to mimic their natural learning 
capabilities.

Natural learning and biological evolution are not independent 
processes. Natural brains are themselves products of natural 
selection. 
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Block-based Neural Networks (BbNN)

S.-W. Moon, S.-G. Kong, “Block-based neural networks”, in IEEE Transactions 
on Neural Networks, vol. 12, no. 2, pp. 307–317, 2001,
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Original BbNN Proposal
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Proposed IP for BbNNs

García, A.; Zamacola, R.; Otero, A.; de la Torre, E. A Dynamically 
Reconfigurable BbNN Architecture for Scalable Neuroevolution in 
Hardware. Electronics 2020, 9, 803. https://doi.org/10.3390/electronics9050803

Block-based Neural Network layout

A hardware-accelerated integrated IP core for neuroevolution that allows training (and re-training)
the neural network in an edge computing device, during its whole lifetime.

Neurons are arranged as a two-
dimensional array of PEs. The number of 
inputs of the architecture corresponds 
to the number of columns.
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Internal Structure of the BBNNs PE

Proposed structure for the BbNN processing element.

Each PE in the BbNN computes a variable number of outputs with a given number of 
inputs:
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PE Control Over 7 Cycles
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Network Latency

▪ Different network have different latencies

▪ Different options:

 Use synchronization signals

 Let the evolutionary algorithm find the most appropriate latency value

 Select a random latency value



57

Loops in BbNN

▪ Loops provide memory-like capabilities 
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BbNNs for neuroevolution

The hardware-accelerated integrated BbNN IP core for neuroevolution is accompanied by an EA 
running on a embedded processor, that allows training (and re-training) the neural network in an 
edge computing device, during its whole lifetime. 

Chromosome Representation

The evolutionary algorithm can decide the 
direction of every link during the training 
stage, so internal loops may appear.

This approach enables the continuous adaptation of systems working in dynamic environments.
Continuous adaptation is not possible in conventional ANNs that use gradient-based back
propagation algorithms for training.
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Evolutionary Algorithm

Concept of Aging to guarantee diversity
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Dynamically Scalable BBNNs

Scalable Implementations of the BBNN

Dynamically scalable BbNN model handles the size of  the network as a parameter to be optimized 

at run-time, instead of  being fixed at design-time.  This way, the optimization algorithm can find 

the appropriate size, as a trade-off  between the size of  the design space under exploration and the 

capability of  the architecture to undertake complex problems.
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BbNN Implementation

Implementation in a 

xc7z020clg400-1 

SoC (Digilent Pynq 

board)

Run-time composition
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BbNN Resources
PE resources

Comparison with other SoA implementations

BbNN Performance
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Applications of Neuroevolvable BBNNs

BBNN driven by means of EAs are capable of lifelong learning in dynamic environments, as
a form of Reinforcement Learning. Reinforcement Learning drives agents on how to take
actions in an environment, trying to maximize a cumulative reward.

Applied to OpenAI environments

Evolved Controller

https://www.youtube.com/watch?v=bJnAgLmLHe0&t=381s 
Mins. 3:39 – 5:09

https://www.youtube.com/watch?v=bJnAgLmLHe0&t=381s
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Applications of Neuroevolvable BBNNs

BBNN driven by means of EAs are capable of lifelong learning in dynamic environments, as
a form of Reinforcement Learning. Reinforcement Learning drives agents on how to take
actions in an environment, trying to maximize a cumulative reward.

Letting the EA find the BbNN size

Self-adaptivity for Fault-tolerance
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DEEP NEUROEVOLUTION: 

EVOLUTIONARY 

COMPUTATION + DEEP 

LEARNING
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Deep Neuroevolution

Designing a Deep Neural Network (DNN) involves a manual process with relies on the experience of
designers. It's a process with a significant manual component, almost a handicraft work.
Neuroevolution techniques can be also applied to develop new solutions based on Deep Neural
Networks.

• Use Evolutionary Algorithms to 
automate the design of Deep 
Neural networks 

• Implement architectures and 
algorithms that enable online 
(runtime) DNN training. 

Deep Neural Network (DNN)
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DIAPOSITIVA 68

IBM Neural Computer

IBM’s Neural Computer consists of 432 nodes (27 nodes across 16 modular cards) based on Xilinx FPGAs.

Each node comprises a Xilinx Zynq system-on-chip — a dual-core ARM A9 processor paired with an FPGA on

the same die — along with 1GB of dedicated RAM. The nodes are arranged in a 3D mesh topology,

interconnected vertically with electrical connections called through-silicon vias that pass completely through

silicon wafers or dies.

Narayanan, P., Cox, C. E., Asseman, A., Antoine, N., Huels, H., Wilcke, W. W., 
& Ozcan, A. S. (2020). Overview of the IBM neural computer architecture. arXiv 
preprint arXiv:2003.11178.

Can this approach work on the embedded domain?



69

System Architecture

Convolutional Neural Network
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Atari Pong Game

Problem to solve

Laserna, J., Otero, A., Torre, E.d.l. (2022). A Multi-FPGA Scalable Framework 
for Deep Reinforcement Learning Through Neuroevolution. In: Gan, L., Wang, Y., 
Xue, W., Chau, T. (eds) Applied Reconfigurable Computing. Architectures, 
Tools, and Applications. ARC 2022.

A whole framework has been 
developed for deploying 
neuroevolutive algorithms over 
different hardware architectures 
(CPU, GPU and FPGA).
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Hyper-parameter Value

Generations number (G) 250

Population size (N) 1000

Selected 
individuals (T)

200 (20% 
of G)

Mutation power 
(𝜎)

0.005

Crossover power 
(𝜔)

0

Number of elites 
(E)

1

Genetic Algorithm for training

- Evolving the topology, weights and/or
hyperparameters in a DNN.
- Avoid the handcrafted design of the

network topology.
- Enables Continuous learning of the

network.
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Option 1 Option 2

fitness = 

𝑖=0

𝑁

𝐹𝑖 fitness = 

𝑖=0

𝑁

𝛾𝑖𝐹𝑖

0 + 0 + 0 + 0 + 1 + 0 + 0 

+ 0 + 0 + 1 + 0 + 0 + 0 + 

0 + 0 + -1 + ... + 1 

= 20

... + -0.04398 + -0.05497, 

-0.06871 + -0.08589 + -

0.10737 + -0.13421 + -

0.16777 + -0.20971 + -

0.26214 + 0 + 0 + 0 + 0 + 

0 + 0 + ... 

= 5.876

𝑓𝑜𝑟 𝛾 = 0.5

Fitness Function
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CPU architecture 

Implementations: CPU-based Solution
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Implementations: GPU-based Solution

GPU architecture 
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FPGA SoC architecture 

Implementations: FPGA-based Solution

https://tvm.apache.org/vta
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Implementations: Multi FPGA Solution

Multi-FPGA Distribution
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•  CPU: Intel Core i5-10400 2.90 GHz 

• GPU: AMD Radeon RX 570 8 GB

• VTA: PYNQ-Z1 (Zynq®-7000 FPGA + dual-

core Cortex-A9 processor) 

TDP

CPU GPU VTA

65 W 180W 4.7 W

Hardware Details
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Note: the higher the better

Experimental Results
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Generation 0 (fitness -21)

Experimental Results
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Generation 25 (fitness 6) Generation 60 (fitness 13) Generation 165 (fitness 20)

Experimental Results
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Note: the lowest the better

Neural network execution times

Experimental Results
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Note: the lowest the better

OpenAI Environment execution times

Experimental Results
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Note: the lowest the better

One generation execution times

Experimental Results
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Note: the lowest the better

Multiple FPGAs estimated times

Experimental Results
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FROM NEUROEVOLUTION TO 

NEUROMORPHIC: 

EVOLUTIONARY SPIKING 

NEURAL NETWORKS

CPS SUMMER SCHOOL – September 18-22 – ALGHERO, SARDINIA, ITALY
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Neuromorphic Computing Systems

Neuromorphic computing systems are unconventional computing devices that draw inspiration
from the human brain. These systems are constructed using artificial neurons and synapses.
Within a neuromorphic computer, both data processing and memory storage are controlled by
artificial neurons and synapses. Their functionality is determined by the architecture and
parameters of the network, and they accept input in the form of spikes, with their timing,
intensity, and waveform serving as encoding mechanisms for numerical information.
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Benefits of Neuromorphic Computing

Highly parallel operation: Neuromorphic computers operate in a highly parallel

manner, with all neurons and synapses potentially working simultaneously. However, their
computations are simpler compared to traditional von Neumann systems.

Collocated processing and memory: Processing and memory are closely integrated.

Neurons and synapses both handle processing and store values, reducing the processor/memory
separation (bottleneck) seen in von Neumann systems, which can slow down performance and
consume more energy.

Inherent scalability: Neuromorphic computers are designed to be easily scalable by adding

more chips, increasing the number of neurons and synapses. Multiple chips can be combined to create
larger networks, as demonstrated in systems like SpiNNaker and Loihi.

Event-driven computation: Neuromorphic computers use event-driven computation, only

performing calculations when data is available. This approach, along with temporally sparse activity,
leads to highly efficient computation, as neurons and synapses only work when spikes occur.

Stochasticity: Neuromorphic computers can incorporate randomness, such as in the firing of 

neurons, to introduce noise into their operations.
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Spiking Neural Networks

Membrane potential over time in a spiking neuron

▪ Spiking Neural Networks (SNNs):

 Use specific spiking neuron models

 Information is encoded in spike times

 Use synapse strengths as the adjustable parameters of 
the network
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ASIC implementations

Spiking Neural Networks: Existing Implementations

o Multi core: SpiNNaker, TrueNorth, 
Loihi

o Single core: ODIN

o Low adaptability

o Great computation efficiency and 
resource allocation

FPGA implementations
o Higher adaptability

o More solutions proposed and 

research contribution
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FPGA Implementations

Ref. Year Neuron model
Maximum 

Neuron number
Target FPGA Data precision

Learning 

technique
Dataset Accuracy

Asmer Hamid Ali 

et al. 
2022 LIF Xilinx Artix-7 8-bit fixed point

Gradient

descent learning
MNIST 92.8 %

Thao N. N. 

Nguyen et al. 
2022 LIF Xilinx XC7Z020 24-bit fixed point

STDP-based 

learning algorithm
Caltech-101 95.7 %

Yijun Liu et al. 2022 LIF, IZH 16384 Xilinx XC7K325T 16-bit fixed-point
ANN-SNN weights 

conversion
MNIST

97,7 % (LIF)

97,81 % (IZH)

Jian Zhang et al. 2022
Custom weighted 

neuron model

Xilinx Virtex-7 

VC707
Fixed-point

Back-Propagation 

STDP (BP-STDP)
MNIST 95,3 %

Zhen He et al. 2022 LIF Xilinx ZC706 16-bit fixed-point

Reward-

modulated STDP 

(R-STDP)

MNIST 93 %

Jianhui Han et al. 2020 LIF 16384 Xilinx ZC706 16-bit fixed-point MNIST 97,06 %

Vasilis 

Sakellariou et al. 
2021 LIF 4096

Xilinx ZYNQ 

Ultrascale+ 

MPSoC zcu104

ANN-SNN weights 

conversion
MNIST

Jiajun Wu et al. 2021 LIF 6400
Xilinx 

xc7z035fbg676-2

Floating point / 

16-bit fixed-point
STDP MNIST 95 %

Minitaur 2014 LIF 65K
Xilinx Spartan-6 

LX150
16-bit fixed-point MNIST 92 %

Bluehive 2012 IZH 64K
Altera Stratix IV 

230

Felipe Sanchez et 

al. 
2017 IZH 250K Zynq 7100 device

Floating point / 

fixed-point
STDP, ReSuMe

Combinational 

tasks (XOR 

benchmark)

~100 %
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Neuron models

Spike models

 Describe internal variables of the 
neuron

 Higher implementation cost

 Hodgkin-Huxley model, Morris-
Lecar model

 Based on modeling the generation 
of the spike

 Lower implementation cost

 Integrate and Fire (I&F) model, 
Izhikevich spiking model

Conductance-based models

Neuron model N of FLOPS (1ms)

Hodgkin-Huxley 1200

Morris-Lecar 600

I&F 5

Izhikevich 13

E. M. Izhikevich, "Which model to use for cortical spiking neurons?," in 
IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063- 1070, Sept. 
2004, doi: 10.1109/TNN.2004.832719. 
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The Izhikevich spiking model

v -> membrane potential
u -> membrane recovery variable

The Izhikevich Spiking model combines biological plausibility of HH model with computational
efficiency of I&F model

E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural 
Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.
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Data Encoding in SNNs

Problem: converting continuous input 
data into spike times
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Data encoding in SNNs

Solution: Gaussian activation functions 
with overlapping profiles

Problem: converting continuous input 
data into spike times

Accuracy can be improved by sharpening the 

receptive fields or increasing the number of neurons

Higher values at the intersection points indicate stronger
excitation for that variable, and these are transformed
into lower delay times, rounded to the nearest discrete
time step
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Unsupervised learning

Learning techniques for SNNs

▪ There is no prior information about the input data classification

▪ Spike-timing-dependent plasticity (STDP)

Supervised learning

▪ Require predefined goals in the learning process

▪ SpikeProp, ReSuMe, ESC

Reinforcement learning

▪ The SNN takes an action based on the state observations of the environment, 
receiving a reward value in exchange

▪ Specially appropriated for genetic algorithms
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Proposed System implementation for SNNs

SNN IP

Sanchez, F. G., & Nunez-Yanez, J. (2017). Energy 
proportional streaming spiking neural network in 
a reconfigurable system. Microprocessors and 
Microsystems, 53, 57-67.

▪ Feed forward topology with L layers and n 
neurons per layer

▪ Targeting a Zynq 7020 device

▪ Adjustable data width

▪ Described using HLS
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Concurrent solution implementation

SNN IP 1

SNN IP 2
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▪Adjustable parameters: network weights (synapse strengths)

Evolutionary strategy proposed
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Evolutionary strategy proposed

Uses a Gaussian distribution to generate random 
values from the previous ones.

Elitism: selection of the best individuals
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Evolutionary strategy proposed

Classification: accumulated error 

over the entire dataset

Reinforcement learning: use of a 

specific fitness function
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Use cases to Demonstrate the Solution

▪ OpenAI Gymnasium  
Mountain car environment

Supervised learning 
(Classification)

Reinforcement learning

▪ Iris dataset

▪ Breast Cancer Wisconsin dataset

▪ Pima Indian Diabetes dataset

▪ Wine dataset
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Supervised learning: UCI Datasets

▪ Predefined number of trials. Fixed execution duration for every iteration

▪ Datasets are divided into a training and a testing set.

▪ Sets are randomly selected, keeping the proportion of classes from the original dataset

▪ Existence of a target output at every trial

Iris

Parameter Value

Training trials 105 (70%)

Testing trials 45 (30%)

Hidden layers 1

Neurons per layer 17

Hidden neurons 17

Input neurons 17

Output neurons 1

Total neurons 35

Population 20

Trial time (ms) 100

Parameter Value

Training trials 350 (50.07%)

Testing trials 349 (49.93%)

Hidden layers 1

Neurons per layer 37

Hidden neurons 37

Input neurons 37

Output neurons 1

Total neurons 75

Population 20

Trial time (ms) 100

Parameter Value

Training trials 385 (50.13%)

Testing trials 383 (49.87%)

Hidden layers 1

Neurons per layer 33

Hidden neurons 33

Input neurons 33

Output neurons 1

Total neurons 67

Population 20

Trial time (ms) 100

Parameter Value

Training trials 125 (70.22%)

Testing trials 53 (29.78%)

Hidden layers 1

Neurons per 

layer

53

Hidden neurons 14

Input neurons 53

Output neurons 1

Total neurons 68

Population 20

Trial time (ms) 100

Breast Cancer WisconsinPima Indian Diabetes Wine
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Mountain car environment

Parameter Value

Hidden layers 1

Neurons per layer 17

Hidden neurons 17

Input neurons 17

Output neurons 1

Total neurons 35

Population 5

Trial time (ms) 100

Array position Attribute Min Max Unit

0
position of the 

car (x-axis)

-1.2 (changed to -

0.9)

0.6 (changed to 

0.9)
position (m)

1 velocity of the car -0.07 0.07 velocity (v)

Value Action

0 Accelerate to the left

1 Don’t accelerate

2 Accelerate to the right

Action Space

Observation Space

Use cases. Reinforcement learning
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UCI datasets. Results

Resource utilization

Implementation Synthesized neurons LUTs FFs Block RAM Tiles DSPs

Iris (single-IP) 35 13236 (25%) 19608 (18%) 26 (19%) 34 (15%)

Iris (dual-IP) 35 (x2) 26884 (51%) 39441 (37%) 52 (37%) 68 (31%)

Breast Cancer Wisconsin (single-IP) 75 18419 (35%) 27827 (26%) 32 (23%) 49 (22%)

Breast Cancer Wisconsin (dual-IP) 75 (x2) 37179 (70%) 55875 (53%) 64 (46%) 98 (45%)

Pima Indian Diabetes (single-IP) 67 17638 (33%) 26087 (25%) 32 (23%) 44 (20%)

Pima Indian Diabetes (dual-IP) 67 (x2) 35587 (67%) 52401 (49%) 64 (46%) 88 (40%)

Wine (single-IP) 107 22946 (43%) 30610 (29%) 33 (24%) 65 (30%)

Wine (dual-IP) - Estimated 107 (x2) 52124 (98%) 63182 (59%) 66 (47%) 130 (59%)
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UCI datasets. Results

Accuracy values

Training accuracy results. Iris dataset Testing accuracy results. Iris dataset. Best individual



107

UCI datasets. Results

Accuracy values

Dataset
Training rate 

(maximum)

Testing rate 

(selected 

individual)

Generations 

until 

convergence 

Iris 98.1% 97.778% ∼1000

Breast Cancer 

Wisconsin
96.857% 95.702% ∼100

Pima Indian 

Diabetes
75.325% 72.063% ∼150

Wine 93.600% 88.679% ∼2800

Dataset Single-IP
Concurrent 

solution

Vitis HLS C 

simulation

Iris 5.013 s 2.752 s 121.262 s

Breast Cancer 

Wisconsin
25.792 s 12.998 s 1767.579 s

Pima Indian 

Diabetes
27.214 s 13.841 s 1689.555 s

Time results. Seconds for a complete 

generation (20 individuals):
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Results Comparison for the UCI Datasets

Dataset Algorithm Neuron type Hardware implementation Testing Accuracy (%)

Iris

This work

DoB-SNN

SRESN

SpikeProp

SWAT

NIDA

DANNA

CS

DE

Izhikevich

LIF

LIF

LIF

LIF

I&F

I&F

Izhikevich

Izhikevich

Yes

No

No

No

No

No

Yes

No

No

97.78%

97.75%

97.01%

96.13%

93.88%

99.30%

99.30%

94.67%

98.33%

Breast Cancer Wisconsin

This work

DoB-SNN

SRESN

SpikeProp

SWAT

NIDA

DANNA

Izhikevich

LIF

LIF

LIF

LIF

I&F

I&F

Yes

No

No

No

No

No

Yes

95.70%

97.35%

97.10%

97.04%

95.66%

98.60%

98.10%

Pima Indian Diabetes

This work

DoB-SNN

SRESN

SpikeProp

SWAT

NIDA

DANNA

CS

DE

Izhikevich

LIF

LIF

LIF

LIF

I&F

I&F

Izhikevich

Izhikevich

Yes

No

No

No

No

No

Yes

No

No

72.06%

76.57%

70.06%

77.38%

72.11%

81.00%

78.00%

74.77%

73.71%

Wine

This work

NIDA

DANNA

CS

DE

Izhikevich

I&F

I&F

Izhikevich

Izhikevich

Yes

No

Yes

No

No

88.679%

99,4%

97.2%

90.78%

87.44%
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Mountain car. Results

Maximum, average and minimum episode duration. Mountain car environment
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Mountain car. Results

Best individuals obtained
Time results

Generation 

number

Average 

episode 

duration 

(time steps)

Maximum 

episode 

duration 

(time steps)

Minimum 

episode 

duration 

(time 

steps)

Standard 

deviation 

(time 

steps)

307 97.3 114 87 11,451

411 99.1 110 89 8,465

228 99.4 129 88 13,922

Execution mode
Average time per 

episode (s)

Zynq execution 6705,173

Random internal 

decision
6707,503
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Results comparison for the Mountain car

Algorithm
Average episode duration 

(time steps)

This work 97.3

Orthogonal decision trees 101.72

Oblique decisión tres 106.02

Closed-form policy 102.61
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Future work

IP adaptability

Breaking current 

dependencies and 

constrains

Fault-tolerance tests

Using ES and the 

Izhikevich neuron model

ES adaptations 
Improving the ES used with 

crossover or more complex 

selection and mutation 

algorithms

Concurrency

Using several Zynq 

devices to enable 

faster computing
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THE A-IQ READY VIEW: 

HYBRID COMPUTING 

PLATFORMS

CPS SUMMER SCHOOL – September 18-22 – ALGHERO, SARDINIA, ITALY
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▪ A-IQ Ready EU project addresses two 
major Trends: “Internet of Things 
(IoT) with 1 Billion $ to 1 Trillion $ 
revenues” and  “From Cloud to Edge”.

The A-IQ READY project

A-IQ READY receives funding within the Key Digital Technologies Joint Undertaking (KDT JU) - 

the Public-Private Partnership for research, development and innovation under Horizon Europe 

– and National Authorities under grant agreement n° 101096658.

▪ A-IQ Ready will apply three backbone for the Society 5.0 disruptive 
technologies: Quantum Sensor, Neuromorphic Acceleration, AI in 
Multi-Agent Systems to build the edge continuum as the digital 
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The A-IQ READY project
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A-IQ READY Project organization
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▪ Federating intelligence across the value 
chain and current trends towards edge 
deployments tend to rely on a multitude of 
accelerators, often deployed within 
specialized platform architectures tied to a 
single vendor.

▪ This fragmentation is detrimental to the 
performance and efficiency targets since 
bridging infrastructure, protocol elements 
and middleware/software components 
inevitably add tremendous overheads to 
any application function that spans multiple 
platforms.

▪ Emerging acceleration technologies based 
on conventional digital computing, novel 
analogue-mixed signal neuromorphic 
computing, and high-performance data 
paths, and deploy these within a 
standardized system-level architecture with 
a fundamentally new software-middleware 
stack that enables their integration at any 
stage in the value chain.

A-IQ READY SC 6: Motivation
Hybrid Computing (Quantum Computing & High-Performance Computing)
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▪ Provide a hybrid computing platform

▪ Enable the seamless deployment of AI 
algorithms at different stages of the 
sensor-cloud value chain

▪ Ensure the appropriate power-latency-
cost-functionality envelope.

▪ Delivering optimal power-performance for 
workloads at each stage of the value chain

▪ Reducing key metrics of time to insight 
(especially in real-time contexts) and energy per 
insight

▪ Enabling the delivery of AI workloads that span 
multiple stages of the value chain

▪ Ensuring security and resilience of data within 
the compute infrastructure

A-IQ READY SC 6: Vision
Hybrid Computing (Quantum Computing & High-Performance Computing)
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▪ SC6 is considered as technology provider, where 
fundamental technologies are developed as 
input for the output enabler SCs.

The key mission is to 

▪ integrate emerging non-von Neumann 
computing technologies & traditional neural 
network acceleration within a singular 
programmable platform. 

In doing so SC6 

▪ will realize an acceleration platform whose 
operational envelope can be tailored to the 
varying requirements of device types across the 
sensor-cloud value chain.

Technological Readyness Level

▪ Start: TRL 2

▪ End: TRL 4

SC6 Partners:

A-IQ READY SC 6: Overview
Hybrid Computing (Quantum Computing & High-Performance Computing)
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▪ Hybrid computing platform 
 focus on integrating heterogeneous processing technologies within a single platform architecture

 focus on a multi-grain reconfigurable overlay architecture, integrated in a RISC-V processor pipeline

 Communication and interfacing IP to ensure high-performance on throughput

▪ Middleware 
 Firmware stack to manage mixed-criticality execution along the value chain

 Middleware for data relay between high-performance computing elements

 Software stack to orchestrate workloads between conventional compute and ultra-low power always-on 
accelerators

▪ Software Tooling 
 SDK and interfacing APIs with standard machine learning frameworks to ensure portability of the developed 

models

 develop an accompanying toolchain based on the MLIR representation to support the automatic compilation and 
mapping of the AI models

A-IQ READY SC 6: Development – three 
primary focus areas
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▪ Integrated platform architecture combining high-performance datapath and 
analogue-mixed signal neuromorphic processors for AI at multiple stages of the 
sensor-cloud value chain.

▪ Middleware to enable seamless model deployment across heterogeneous 
compute resources.

▪ SDK and requisite software stack for enabling the usability of the developed 
platforms to execute existing and emerging models.

▪ Multi-grain reconfigurable overlay architecture, integrated in a RISC-V processor 
▪ Toolchain based on the MLIR 
▪ System-on-Chip Platform, integrating RISC-V processors, CGRAs and 

communication interfaces

A-IQ READY 6: Results
Hybrid Computing (Quantum Computing & High-Performance Computing)
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