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Hardware acceleration for 
high parallelism and energy efficiency
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How to perform hardware design?

… circuit design is often considered a “black art”, restricted to 
only those with years of training in electrical engineering… 

[cacm.acm.org/magazines/2023/1/]

… chips take years to design, resulting in the need to speculate 
about how to optimize the next generation of chips… 

[ai.googleblog.com/2020/04]
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High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design 
beyond RTL level (VHDL, Verilog)
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Bridging the Gap Between Software and Hardware

SW

HW
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George et al. FPL 2014.
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

for (i = 0; i < num_rows, i++) {
  tmp = 0; 
  s = row[i]; e = row[i+1];

  for (c = s; c < e; c++) {
    cid = col[c];
    tmp += val[c] * vec[cid];
  }

  out[i] = tmp;
}

Sparse-matrix dense-vector multiplication
(SpMV)

SW

HW
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Bridging the Gap Between Software and Hardware

for (i = 0; i < num_rows, i++) {
  tmp = 0; 
  s = row[i]; e = row[i+1];

  for (c = s; c < e; c++) {
    cid = col[c];
    tmp += val[c] * vec[cid];
  }

  out[i] = tmp;
}

Sparse-matrix dense-vector multiplication
(SpMV)

Variable loop bounds

Irregular memory 
access patterns

Variable memory latency
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→ impact on circuit performance and power
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
Langhammer et al. ARITH 2015.

A

B

B’

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

short & fast long & slow

A → B
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Bridging the Gap Between Software and Hardware

How to generate high-performance circuits from 
general-purpose software code? 

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
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Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components
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Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}
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• Create a datapath suitable to implement the required computation
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• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling 
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A Different Way to Do HLS

Static scheduling (standard HLS tool): decide 
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide 
at runtime when each operation executes
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• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

High-level synthesis of 
dynamically scheduled circuits
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HLS of Dynamically Scheduled Circuits
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HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol 
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits
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Merge

Join
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Join

Dataflow Components
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LD x[i]

Merge

Buff

Fork

+

1
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<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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comb.

From Program to Dataflow Circuit

Single token on cycle, in-order 
tokens in noncyclic paths

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017
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Backpressure from slow paths prevents pipelining

From Program to Dataflow Circuit
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break 
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Buffers as FIFOs to regulate 
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Inserting Buffers
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Mixed integer linear programming (MILP) model 
based on Petri net theory
• Analyze token flow through the circuit
• Determine buffer placement and sizing
• Maximize throughput for a target clock period

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022
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Reaping the benefits of 
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• Static HLS: share units between operations which execute in different clock cycles

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

M1

* *

M2
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• Static HLS: share units between operations which execute in different clock cycles

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Static scheduling

C1 C2 C3 C4 C5

M1: mul 1

M2: mul 2

M1: mul 1

M2: mul 2

C1 C2 C3 C4 C5

M1/2: mul 1

M1/2: mul 2

M1/2: mul 1

M1/2: mul 2

C6 C7

2 muls, II = 1 1 mul, II = 2

M1

* *

M2
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

M1

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Sharing not possible without 

damaging throughput

M1 M2

Units fully utilized

(high throughput, II = 1)

Use throughput information 
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Sharing possible without 

damaging throughput

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use throughput information 
to decide what to share
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• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
    a[i] = a[i]*x;
    b[i] = b[i]*y;
}

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

FIFO

Branch

Token order: M1, M2

Inputs of M1, M2

*

M1/2

Sharing mechanism for 
deadlock-free execution
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Backpressure from slow paths prevents pipelining

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}
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Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

Buffers for high throughput
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RAW dependency
not honored!

Inserting Buffers

What about memory?

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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Access
st (5)
ld (3)
ld (5)
st (3)
ld (6)
ld (7)
st (6)
st (3)
ld (1)
ld (6)

The Ordering Problem

• A dataflow circuit may reorder memory accesses in (almost) any way

• We need to keep RAWs, WAWs, and WARs in the original program order

RAW 

RAW 

WAW
WAR

WAR

RAW = Read after write
st (n) → ld (n)

WAW = Write after write
st (n) → st (n)

WAR = Write after read
ld (n) → st (n)

Sequential trace 
of memory accesses 

in program order

t
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• Processor LSQs keep dependent memory accesses in the original program order

We Need a Load-Store Queue (LSQ)!

Processor
datapath 

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

      addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop



73

• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath 

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

      addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering 

(load-store 
queue)

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.
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• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath 

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

      addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering 

(load-store 
queue)

LSQ placement and sizing for high 
throughput and low resources

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}
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• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath 

(out of order)

Memory
Ordering 

(load-store 
queue)

Instruction 
fetch & decode

(in order)

loop: lw $t2, 0($t4) 

lw $t3, 100($t4) 

mul $t5, $t2, $t3

      addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4 

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering 

(load-store 
queue)

Memory access ordering info 
devised by dataflow circuit 

Dynamic order info 
(LSQ allocation)

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.
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Dataflow Circuit with the LSQ

High-throughput pipeline with 
memory dependencies honored

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5]; 
2: x[1]=4 → ld hist[4]; st hist[4]; 
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
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Reaping the benefits of 
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining 

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution
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float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];

   i++;
} 
while (d<x);

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

Nonspeculative Dataflow Circuit
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float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];

   i++;
} 
while (d<x);

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

Nonspeculative Dataflow Circuit
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<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];

   i++;
} 
while (d<x);

Nonspeculative Dataflow Circuit
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81

1: a[0]=50.0; b[0]=30.0 
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];

   i++;
} 
while (d<x);

Nonspeculative vs. Speculative System

Long control flow decision 
prevents pipelining
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82

1: a[0]=50.0; b[0]=30.0 
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

float d=0.0; x=100.0; int i=0; 

do {
d = a[i] + b[i];

   i++;
} 
while (d<x);

Nonspeculative vs. Speculative System



83

MergeMerge

Load

Exit

Store

Store

...

Branch

Speculator

++

Fork

+

...

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

Speculation in Dataflow Circuits

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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MergeMerge

Load

Exit

Store

Store

...

Branch

Commit

Commit

Speculator

++

Fork

+

...

Commit

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Merge

<

+

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Speculator instead of 
regular branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

<

+
Speculator instead of 

regular Branch

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Input boundary: save units

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

Save

<

+
Input boundary: 

Save units

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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Buff

Load a[i] Load b[i]

+

Start, i=0

End

d

Spec.
Branch

Commit

Output boundary: commit 
units

Merge

Save

<

+

Fork

Output boundary: 
Commit units

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 
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i

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Save

Commit

Merge

<

+

1

x

BEFORE (without speculation)

Branch

Buff

Load a[i] Load b[i]

+

Fork

d

Merge

<

+

1 i

xWait for long-
latency condition

Continue computing 
before condition 

known

Speculative Dataflow Circuit
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Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019 

High-throughput speculative pipeline
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HLS of Dynamically Scheduled Circuits

Static HLS vs. dynamic HLS?
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Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler



95

Static vs. Dynamic HLS

××
Mvt

Gaussian

Lo
w

e
r 

is
 b

et
te

r

Left is better

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS

Reduced execution time in 
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian
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Static vs. Dynamic HLS

Reduced execution time in 
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

LSQ causes significant 
resource overheads

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

1020 LSQ slices

220 295 kernel slices

1073

~ 5% of a Kintex-7 
FPGA

LSQ causes significant 
resource overheads

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

Static and dynamic HLS 
have the same pipelining 

capabilities

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS
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Static vs. Dynamic HLS

Regular benchmarks are 
Pareto-dominated due to 

CP increase

Lo
w

e
r 

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the 
corresponding static designs produced by Vivado HLS
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DSP-oriented applications

Static vs. Dynamic Scheduling

Computer
Architecture

High-Level
Synthesis

Statically Scheduled
→ “Compiler does the job”

Dynamically Scheduled
→ “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Traditional HLS Dataflow circuits

General-purpose code

(new applications and users)
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Bridging the Gap Between Software and Hardware

A different way to go about HLS
(generating dynamically scheduled circuits from C code)

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
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Bridging the Gap Between Software and Hardware

Sequential C-based synthesis still 
limits achievable parallelism

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Elakhras, Guerrieri, Josipović, and Ienne. Unleashing Parallelism in Elastic Circuits with Faster Token Delivery. FPL 2022 Best Paper Award Nominee
Cheng, Josipović, Wickerson, and Constantinides. Dynamic Inter-Block Scheduling for HLS. FPL 2022 Best Paper Award Nominee
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Bridging the Gap Between Software and Hardware

Elakhras, Guerrieri, Josipović, and Ienne. Unleashing Parallelism in Elastic Circuits with Faster Token Delivery. FPL 2022 Best Paper Award Nominee
Cheng, Josipović, Wickerson, and Constantinides. Dynamic Inter-Block Scheduling for HLS. FPL 2022 Best Paper Award Nominee

Sequential C-based synthesis still 
limits achievable parallelism

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW
New programming models and 

compiler techniques for irregular parallelism
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Merge

Buff 1

1

Load a[i]

Branch

N

+

<

Store a[i]

Fork

*

Fork

FIFO

c

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Merge

Buff 1

1

Load a[i]

Branch

N

+

<

Store a[i]

Fork

*

Fork

FIFO

c

Generic and expensive 
dataflow logic

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Merge

Buff 1

1

Load a[i]

Branch

N

+

<

Store a[i]

Fork

*

Fork

FIFO

c

Units are 
always ready

Customized dataflow logic 
(50% area reduction)

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.



109

Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

Covers some behaviors
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

A formal verification framework for improving the 
quality of circuits generated from software code

Covers some behaviors

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit 
transformations during logic synthesis and technology mapping

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

1 2
3

4

5

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit 
transformations during logic synthesis and technology mapping

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

R
egister

1 2
1

2

1

B
u
ffe
r

R
egister

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit 
transformations during logic synthesis and technology mapping

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

R
egister

1 2
1

2

1

B
u
ffe
r

R
egister

Single logic level after logic synthesis → redundant regs, high latency, low frequency
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Bridging the Gap Between Software and Hardware

HLS is still not meant 
for software programmers

HLS often fails in extracting 
parallelism from software code

HLS circuits need hardware-level 
functional verification

It is difficult for HLS to account for 
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit 
transformations during logic synthesis and technology mapping

Implementation-aware compiler optimizations 
for fast and small circuits

Simultaneous pipelining & technology mapping (our work)

R
egister

1 2
1

2

Fewer registers, low latency, high frequency

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

R
egister

1 2
1

2

1

B
u
ffe
r

R
egister

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.

Single logic level after logic synthesis → redundant regs, high latency, low frequency
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Bridging the Gap Between Software and Hardware

Enable diverse users to accelerate compute-intensive 
applications on hardware platforms
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Thanks! ☺ 

dynamo.ethz.ch dynamatic.epfl.ch

Research group: Dynamatic HLS tool: 

Dynamatic 2.0 coming soon!
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