
1

From Software Programs to Digital Circuits

Lana Josipović

September 2023

22

Hardware acceleration for
high parallelism and energy efficiency

33

How to perform hardware design?

… circuit design is often considered a “black art”, restricted to
only those with years of training in electrical engineering…

[cacm.acm.org/magazines/2023/1/]

… chips take years to design, resulting in the need to speculate
about how to optimize the next generation of chips…

[ai.googleblog.com/2020/04]

4

High-Level Synthesis: From Programs to Circuits

Raise the level of abstraction for hardware design
beyond RTL level (VHDL, Verilog)

5

Bridging the Gap Between Software and Hardware

SW

HW

6

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

SW

HW

7

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

SW

HW

8

Bridging the Gap Between Software and Hardware

George et al. FPL 2014.

HLS is still not meant
for software programmers

SW

HW

9

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

SW

HW

10

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

for (i = 0; i < num_rows, i++) {
 tmp = 0;
 s = row[i]; e = row[i+1];

 for (c = s; c < e; c++) {
 cid = col[c];
 tmp += val[c] * vec[cid];
 }

 out[i] = tmp;
}

Sparse-matrix dense-vector multiplication
(SpMV)

SW

HW

11

Bridging the Gap Between Software and Hardware

for (i = 0; i < num_rows, i++) {
 tmp = 0;
 s = row[i]; e = row[i+1];

 for (c = s; c < e; c++) {
 cid = col[c];
 tmp += val[c] * vec[cid];
 }

 out[i] = tmp;
}

Sparse-matrix dense-vector multiplication
(SpMV)

Variable loop bounds

Irregular memory
access patterns

Variable memory latency

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

SW

HW

12

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

SW

HW

13

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

SW

HW

Functional verification of circuits using hardware simulation
→ inefficient, limited, non-exhaustive

Covers some behaviors

14

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

SW

HW

Functional verification of circuits using hardware simulation
→ inefficient, limited, non-exhaustive

Covers some behaviors

15

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

16

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW
Langhammer et al. ARITH 2015.

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

17

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW
Langhammer et al. ARITH 2015.

A

B

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

A → B

18

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW
Langhammer et al. ARITH 2015.

A

B

B’

FPGA technology mapping, placement, and routing
→ impact on circuit performance and power

short & fast long & slow

A → B

19

Bridging the Gap Between Software and Hardware

How to generate high-performance circuits from
general-purpose software code?

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

20

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

21

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

LD x[i] LD c[n-i]

*

+

Program functionality

Operation
schedule

22Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

23Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

24Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7 C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

25Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

26Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

27Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

}

i

+

1

<

N

acc

Static
controller

2 stages

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

LD x[i] LD c[n-i]

*

+

Low throughput: slow execution

28Program functionality

Operation
schedule

Standard HLS

• Create a datapath suitable to implement the required computation

• Create a fixed schedule at compile time to activate the datapath components

for (i=0; i<n; i++) {
acc += x[i] * c[n-i];

} C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

C1 C2 C3 C4 C5 C6

mul

C7

add

C8 C9 C10 C11 C12

LD
regs

mul add
LD

regs

mul add
LD

regs

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Clock cycles

1

2

3

Lo
o

p
 it

e
ra

ti
o

n
s

Naïve schedule:

Pipelined schedule:

High throughput: fast execution

i

+

1

<

N

acc

Static
controller

LD x[i] LD c[n-i]

*

+ Initiation Interval (II) = 1

29

• Dynamic scheduling
– Maximum parallelism: Only serialize memory accesses on actual dependencies

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency
• Static scheduling (standard HLS tool)

– Inferior when memory accesses cannot be disambiguated at compile time

The Limitations of Static Scheduling

30

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

31

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

32

A Different Way to Do HLS

Static scheduling (standard HLS tool): decide
at compile time when each operation executes

Dynamic scheduling (our HLS approach): decide
at runtime when each operation executes

33

• Asynchronous circuits: operators triggered when inputs are available
– Budiu et al. Dataflow: A complement to superscalar. ISPASS’05.

• Dataflow, latency-insensitive, elastic: the synchronous version of it
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

– Carloni et al. Theory of latency-insensitive design. TCAD’01.

– Jacobson et al. Synchronous interlocked pipelines. ASYNC’02.

– Vijayaraghavan and Arvind. Bounded dataflow networks and latency-insensitive circuits. MEMOCODE’09.

Dynamically Scheduled Circuits

High-level synthesis of
dynamically scheduled circuits

34

HLS of Dynamically Scheduled Circuits

35

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

36

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

37

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

38

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

39

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

40

Component 1 Component 2

data

valid

ready

• We use the SELF (Synchronous ELastic Flow) protocol
– Cortadella et al. Synthesis of synchronous elastic architectures. DAC’06.

• Every component communicates via a pair of handshake signals

• Make scheduling decisions at runtime
– As soon as all conditions for execution are satisfied, an operation starts

Dataflow Circuits

41

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

42

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

43

Fork

Fork

Join

Branch Merge

Merge

Join

Branch

Dataflow Components

44

JoinFork

Fork

Branch Merge

Merge

Join

Branch

Dataflow Components

+ *

STORE

45

Branch

Branch

Dataflow Components

Fork

Fork

Merge

Merge

Join

Join

46

Merge

Join

Merge

Join

Dataflow Components

Fork

Fork

Branch

Branch

47

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

48

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

49

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

50

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

51

From Program to Dataflow Circuit

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

52

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

From Program to Dataflow Circuit

Single token on cycle, in-order
tokens in noncyclic paths

Josipović, Ghosal, and Ienne. Dynamically Scheduled High-Level Synthesis. FPGA 2018 Best Paper Award Nominee
Josipović, Brisk, and Ienne. From C to Elastic Circuits. Asilomar 2017

53

Backpressure from slow paths prevents pipelining

From Program to Dataflow Circuit

54

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

55

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

Fork

Buffers as registers to break
combinational paths

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

56

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

Buffers as FIFOs to regulate
throughput

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

57

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

58

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

LD x[i]

Merge

Buff

Fork

+

1

Start: i=0

Fork

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

BEFORE
(without buffers)

NOW
(with buffers)

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

59

Inserting Buffers

LD x[i]

Merge

Reg

Fork

+

1

Start: i=0

Branch

<

N

LD hist[x[i]]

LD weight[i]

ST hist[x[i]]

+

Exit: i=N

Fork

ST hist[x[i]]

4 stages

comb.

Fork

FIFO

FIFO
FIFO

NOW
(with buffers)

Mixed integer linear programming (MILP) model
based on Petri net theory
• Analyze token flow through the circuit
• Determine buffer placement and sizing
• Maximize throughput for a target clock period

Josipović, Sheikhha, Guerrieri, Ienne, and Cortadella. Buffer Placement and Sizing for High-Performance Dataflow Circuits. FPGA 2020 Best paper award
Rizzi, Guerrieri, Ienne, and Josipović. A Comprehensive Timing Model for Accurate Frequency Tuning in Dataflow Circuits. FPL 2022

60

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

61

• Static HLS: share units between operations which execute in different clock cycles

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

M1

* *

M2

62

• Static HLS: share units between operations which execute in different clock cycles

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Static scheduling

C1 C2 C3 C4 C5

M1: mul 1

M2: mul 2

M1: mul 1

M2: mul 2

C1 C2 C3 C4 C5

M1/2: mul 1

M1/2: mul 2

M1/2: mul 1

M1/2: mul 2

C6 C7

2 muls, II = 1 1 mul, II = 2

M1

* *

M2

63

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

M1

* *

M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

64

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Sharing not possible without

damaging throughput

M1 M2

Units fully utilized

(high throughput, II = 1)

Use throughput information
to decide what to share

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

65

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Sharing possible without

damaging throughput

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

Use throughput information
to decide what to share

66

• Static HLS: share units between operations which execute in different clock cycles

• Dynamic HLS: share units based on their average utilization with tokens

Saving Resources through Sharing

for (i = 0; i < N; i++) {
 a[i] = a[i]*x;
 b[i] = b[i]*y;
}

Units underutilized

(low throughput, II = 2)

M1 M1/2M2

Josipović, Marmet, Guerrieri, and Ienne. Resource Sharing in Dataflow Circuits. FCCM 2022. Best Paper Award Nominee

FIFO

Branch

Token order: M1, M2

Inputs of M1, M2

*

M1/2

Sharing mechanism for
deadlock-free execution

67

Backpressure from slow paths prevents pipelining

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

68

Inserting Buffers
for (i=0; i<N; i++) {

hist[x[i]] = hist[x[i]] + weight[i];
}

Buffers for high throughput

69

RAW dependency
not honored!

Inserting Buffers

What about memory?

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency

70

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

71

Access
st (5)
ld (3)
ld (5)
st (3)
ld (6)
ld (7)
st (6)
st (3)
ld (1)
ld (6)

The Ordering Problem

• A dataflow circuit may reorder memory accesses in (almost) any way

• We need to keep RAWs, WAWs, and WARs in the original program order

RAW

RAW

WAW
WAR

WAR

RAW = Read after write
st (n) → ld (n)

WAW = Write after write
st (n) → st (n)

WAR = Write after read
ld (n) → st (n)

Sequential trace
of memory accesses

in program order

t

72

• Processor LSQs keep dependent memory accesses in the original program order

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

 addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

73

• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

 addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering

(load-store
queue)

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.

74

• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

 addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering

(load-store
queue)

LSQ placement and sizing for high
throughput and low resources

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

75

• Processor LSQs keep dependent memory accesses in the original program order

• Application-specific LSQs for dataflow circuits

We Need a Load-Store Queue (LSQ)!

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

 addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

store hist

load weight

…

Dataflow (out of order)

Memory

…

…

…

…
…

load hist

load x

Ordering

(load-store
queue)

Memory access ordering info
devised by dataflow circuit

Dynamic order info
(LSQ allocation)

Josipović, Brisk, and Ienne. An Out-of-Order Load-Store Queue for Spatial Computing. CASES 2017 Best Paper Award Nominee
Liu, Rizzi, and Josipović. Load-Store Queue Sizing for Efficient Dataflow Circuits. FPT 2022.

76

Dataflow Circuit with the LSQ

High-throughput pipeline with
memory dependencies honored

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW dependency

77

Reaping the benefits of
dynamic scheduling

HLS of Dynamically Scheduled Circuits

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

78

float d=0.0; x=100.0; int i=0;

do {
d = a[i] + b[i];

 i++;
}
while (d<x);

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

Nonspeculative Dataflow Circuit

79

float d=0.0; x=100.0; int i=0;

do {
d = a[i] + b[i];

 i++;
}
while (d<x);

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

Nonspeculative Dataflow Circuit

80

<

Buff

Load a[i] Load b[i]

+

+

Fork

Start, i=0

End

d

3 stages

comb.

Merge

Branch comb.

1 i

x

float d=0.0; x=100.0; int i=0;

do {
d = a[i] + b[i];

 i++;
}
while (d<x);

Nonspeculative Dataflow Circuit

81

81

1: a[0]=50.0; b[0]=30.0
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

float d=0.0; x=100.0; int i=0;

do {
d = a[i] + b[i];

 i++;
}
while (d<x);

Nonspeculative vs. Speculative System

Long control flow decision
prevents pipelining

82

82

1: a[0]=50.0; b[0]=30.0
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

float d=0.0; x=100.0; int i=0;

do {
d = a[i] + b[i];

 i++;
}
while (d<x);

Nonspeculative vs. Speculative System

83

MergeMerge

Load

Exit

Store

Store

...

Branch

Speculator

++

Fork

+

...

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

Speculation in Dataflow Circuits

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

84

MergeMerge

Load

Exit

Store

Store

...

Branch

Commit

Commit

Speculator

++

Fork

+

...

Commit

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

85

MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

86

MergeMerge

Load

Exit

Store

Store

...
Branch

Commit

Commit

Commit

Save

Save

Save

...

Speculator

++

Fork

+

Speculation in Dataflow Circuits

• Contain speculation in a region of the circuit delimited by special components
– Issue speculative tokens (pieces of data which might or might not be correct)

– Squash and replay in case of misspeculation

data + handshake
speculative tag

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

87

Branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Merge

<

+

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

88

Speculator instead of
regular branch

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

<

+
Speculator instead of

regular Branch

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

89

Input boundary: save units

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Merge

Save

<

+
Input boundary:

Save units

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

90

Buff

Load a[i] Load b[i]

+

Start, i=0

End

d

Spec.
Branch

Commit

Output boundary: commit
units

Merge

Save

<

+

Fork

Output boundary:
Commit units

1 i

x

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

91

i

Buff

Load a[i] Load b[i]

+

Fork

Start, i=0

End

d

Spec.
Branch

Save

Commit

Merge

<

+

1

x

BEFORE (without speculation)

Branch

Buff

Load a[i] Load b[i]

+

Fork

d

Merge

<

+

1 i

xWait for long-
latency condition

Continue computing
before condition

known

Speculative Dataflow Circuit

92

Speculative Dataflow Circuit

Josipović, Guerrieri, and Ienne. Speculative Dataflow Circuits. FPGA 2019

High-throughput speculative pipeline

93

HLS of Dynamically Scheduled Circuits

Static HLS vs. dynamic HLS?

94

Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler

95

Static vs. Dynamic HLS

××
Mvt

Gaussian

Lo
w

e
r

is
 b

et
te

r

Left is better

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

96

Static vs. Dynamic HLS
• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

Reduced execution time in
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

97

Static vs. Dynamic HLS

Reduced execution time in
irregular benchmarks

(speedup of up to 14.9X)

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

98

Static vs. Dynamic HLS

LSQ causes significant
resource overheads

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

99

Static vs. Dynamic HLS

1020 LSQ slices

220 295 kernel slices

1073

~ 5% of a Kintex-7
FPGA

LSQ causes significant
resource overheads

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

100

Static vs. Dynamic HLS

Static and dynamic HLS
have the same pipelining

capabilities

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

101

Static vs. Dynamic HLS

Regular benchmarks are
Pareto-dominated due to

CP increase

Lo
w

e
r

is
 b

et
te

r

Left is better

××
Mvt

Gaussian

• Dynamatic: an open-source HLS compiler

• Resource utilization and execution time of the dataflow designs, normalized to the
corresponding static designs produced by Vivado HLS

102

DSP-oriented applications

Static vs. Dynamic Scheduling

Computer
Architecture

High-Level
Synthesis

Statically Scheduled
→ “Compiler does the job”

Dynamically Scheduled
→ “Hardware does the job”

VLIW
Processors

Out-of-Order
Superscalar
Processors

Traditional HLS Dataflow circuits

General-purpose code

(new applications and users)

103

Bridging the Gap Between Software and Hardware

A different way to go about HLS
(generating dynamically scheduled circuits from C code)

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

104

Bridging the Gap Between Software and Hardware

Sequential C-based synthesis still
limits achievable parallelism

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Elakhras, Guerrieri, Josipović, and Ienne. Unleashing Parallelism in Elastic Circuits with Faster Token Delivery. FPL 2022 Best Paper Award Nominee
Cheng, Josipović, Wickerson, and Constantinides. Dynamic Inter-Block Scheduling for HLS. FPL 2022 Best Paper Award Nominee

105

Bridging the Gap Between Software and Hardware

Elakhras, Guerrieri, Josipović, and Ienne. Unleashing Parallelism in Elastic Circuits with Faster Token Delivery. FPL 2022 Best Paper Award Nominee
Cheng, Josipović, Wickerson, and Constantinides. Dynamic Inter-Block Scheduling for HLS. FPL 2022 Best Paper Award Nominee

Sequential C-based synthesis still
limits achievable parallelism

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW
New programming models and

compiler techniques for irregular parallelism

106

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Merge

Buff 1

1

Load a[i]

Branch

N

+

<

Store a[i]

Fork

*

Fork

FIFO

c

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

107

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Merge

Buff 1

1

Load a[i]

Branch

N

+

<

Store a[i]

Fork

*

Fork

FIFO

c

Generic and expensive
dataflow logic

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

108

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Merge

Buff 1

1

Load a[i]

Branch

N

+

<

Store a[i]

Fork

*

Fork

FIFO

c

Units are
always ready

Customized dataflow logic
(50% area reduction)

for (i=0; i<N; i++) {
a[i] = a[i]*c;

}

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

109

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

Covers some behaviors

110

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Functional verification of HLS circuits using
hardware simulation → inefficient and limited

A formal verification framework for improving the
quality of circuits generated from software code

Covers some behaviors

Xu, Murphy, Cortadella, and Josipović. Eliminating excessive dynamism of dataflow circuits using model checking. FPGA 2023.
Xu and Josipović. Automatic inductive invariant generation for scalable dataflow circuit verification. ICCAD 2023.

111

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit
transformations during logic synthesis and technology mapping

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

1 2
3

4

5

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.

112

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit
transformations during logic synthesis and technology mapping

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

R
egister

1 2
1

2

1

B
u
ffe
r

R
egister

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.

113

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit
transformations during logic synthesis and technology mapping

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

R
egister

1 2
1

2

1

B
u
ffe
r

R
egister

Single logic level after logic synthesis → redundant regs, high latency, low frequency

114

Bridging the Gap Between Software and Hardware

HLS is still not meant
for software programmers

HLS often fails in extracting
parallelism from software code

HLS circuits need hardware-level
functional verification

It is difficult for HLS to account for
reconfigurable platform details

SW

HW

Standard pipelining (register placement) is unaware of circuit
transformations during logic synthesis and technology mapping

Implementation-aware compiler optimizations
for fast and small circuits

Simultaneous pipelining & technology mapping (our work)

R
egister

1 2
1

2

Fewer registers, low latency, high frequency

Standard pipelining (target: 2 logic levels after 3-LUT mapping)

R
egister

1 2
1

2

1

B
u
ffe
r

R
egister

Rizzi, Guerrieri, and Josipović. An Iterative Method for Mapping-Aware Frequency Regulation in Dataflow Circuits. DAC 2023
Wang, Rizzi, and Josipović. MapBuf: Simultaneous Technology Mapping and Buffer Insertion for HLS Performance Optimization. ICCAD 2023.

Single logic level after logic synthesis → redundant regs, high latency, low frequency

115

Bridging the Gap Between Software and Hardware

Enable diverse users to accelerate compute-intensive
applications on hardware platforms

116

Thanks! ☺

dynamo.ethz.ch dynamatic.epfl.ch

Research group: Dynamatic HLS tool:

Dynamatic 2.0 coming soon!

	Slide 1: From Software Programs to Digital Circuits
	Slide 2
	Slide 3
	Slide 4: High-Level Synthesis: From Programs to Circuits
	Slide 5: Bridging the Gap Between Software and Hardware
	Slide 6: Bridging the Gap Between Software and Hardware
	Slide 7: Bridging the Gap Between Software and Hardware
	Slide 8: Bridging the Gap Between Software and Hardware
	Slide 9: Bridging the Gap Between Software and Hardware
	Slide 10: Bridging the Gap Between Software and Hardware
	Slide 11: Bridging the Gap Between Software and Hardware
	Slide 12: Bridging the Gap Between Software and Hardware
	Slide 13: Bridging the Gap Between Software and Hardware
	Slide 14: Bridging the Gap Between Software and Hardware
	Slide 15: Bridging the Gap Between Software and Hardware
	Slide 16: Bridging the Gap Between Software and Hardware
	Slide 17: Bridging the Gap Between Software and Hardware
	Slide 18: Bridging the Gap Between Software and Hardware
	Slide 19: Bridging the Gap Between Software and Hardware
	Slide 20: Standard HLS
	Slide 21: Standard HLS
	Slide 22: Standard HLS
	Slide 23: Standard HLS
	Slide 24: Standard HLS
	Slide 25: Standard HLS
	Slide 26: Standard HLS
	Slide 27: Standard HLS
	Slide 28: Standard HLS
	Slide 29: The Limitations of Static Scheduling
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: The Ordering Problem
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Static vs. Dynamic HLS
	Slide 95: Static vs. Dynamic HLS
	Slide 96: Static vs. Dynamic HLS
	Slide 97: Static vs. Dynamic HLS
	Slide 98: Static vs. Dynamic HLS
	Slide 99: Static vs. Dynamic HLS
	Slide 100: Static vs. Dynamic HLS
	Slide 101: Static vs. Dynamic HLS
	Slide 102
	Slide 103: Bridging the Gap Between Software and Hardware
	Slide 104: Bridging the Gap Between Software and Hardware
	Slide 105: Bridging the Gap Between Software and Hardware
	Slide 106: Bridging the Gap Between Software and Hardware
	Slide 107: Bridging the Gap Between Software and Hardware
	Slide 108: Bridging the Gap Between Software and Hardware
	Slide 109: Bridging the Gap Between Software and Hardware
	Slide 110: Bridging the Gap Between Software and Hardware
	Slide 111: Bridging the Gap Between Software and Hardware
	Slide 112: Bridging the Gap Between Software and Hardware
	Slide 113: Bridging the Gap Between Software and Hardware
	Slide 114: Bridging the Gap Between Software and Hardware
	Slide 115: Bridging the Gap Between Software and Hardware
	Slide 116: Thanks!

