
1

Hands On: Design Flow for Heterogeneous
Embedded Computing Infrastructures

The tutorial is divided into three main parts. In the first part we are going to create an hardware
accelerator by using MDC tool which is compliant with the ARTICo3 processing architecture. The system
bitstreams will be created by using Vivado invoked by the ARTICo3 toolchain. In the second part, a
dataflow-based application is developed using PREESM. The tool will be in charge of automatically
dispatch jobs among available hardware resources (CPUs and/or FPGA slots). The last part of the
tutorial will show how to generate and automatically instrument code in order to monitor the whole
hardware infrastructure by using PAPIFY.

1 Hardware Accelerators Creation

As in the tutorial of the last year1(in which is based this one), the use case is an edge detection appli-
cation involving two different algorithms: Sobel and Roberts. The single networks and HDL component
libraries have been created using CAPH2 tool. Starting from their dataflow descriptions, MDC is capable
to merge them in a multi-dataflow one (for more details, see the mentioned tutorial).

ARTICo3 Kernel Generation
To use the coarse-grain reconfigurable computing core generated by MDC it is necessary to generate an
ARTICo3 compliant kernel.
1. Launch MDC executable, placed in folder /home/embedded/Desktop/MDC_CPS/MDC_tool/eclipse
and confirm the workspace with OK.
2. Import Project:
> File > Import... > General > Existing Project into Workspace

Browse to /home/embedded/Desktop/MDC_CPS/MDC_input/Tutorial_EdgeDetection, then:
> OK > Finish

3. Create a configuration window as follows:
> Run > Run configurations...

then right click on Orcc compilation and then select New.
4. Fill in the following compilation settings, as shown in Figure 1.
Name: choose a name for the configuration (for instance "Tutorial_EdgeDetection")
Project: select "Tutorial_EdgeDetection"
Backend:
- Select a backend: MDC
- Output Folder: /home/embedded/Desktop/artico3/demos/mdc_monitors
Options:
- Tick "List of Networks to be Compiled and Merged"
- Number of Networks: 2

1http://www.cpsschool.eu/wp-content/uploads/2018/09/Tutorial_Multi-Grain-Reconfiguration-1.pdf
2http://caph.univ-bpclermont.fr

http://www.cpsschool.eu/wp-content/uploads/2018/09/Tutorial_Multi-Grain-Reconfiguration-1.pdf
http://caph.univ-bpclermont.fr


2

- XDF List of Files: select the two input dataflow networks: "edgeDetection.roberts" and "edgeDetec-
tion.sobel"
- Merging Algorithm: EMPIRIC
- Tick "Generate RVC-CAL multi-dataflow" with "DUMMY" as option
- Select "Generate HDL multi-dataflow"
- Protocol file: MDC_CPS/MDC_input/protocol/protocol_CAPH.xml
- HDL component library: MDC_CPS/MDC_input/HDL_compLib (this folder must contain all the necessary
HDL files)
- Tick on "System Generation"
- Tick on "ARTICo3 Backend"
- Tick on "Enable Monitoring" (selecting the last three monitors)
5. Select Apply and choose Run.

Output folder
Output folder contains:

• src/: includes all the necessary files to create the PAPIFY-monitored and ARTICo3-compliant
CGR accelerator

• mdc-papi_info.xml: describes the PAPI configurations of the MDC accelerator.

System Implementation
- input: HDL files generated by MDC framework
- output: bitstreams of the synthetized system

Let’s run the synthesis and the bitstream generation by using the ARTICo3 toolchain and a configu-
ration file build.cfg. This file can be created ex novo with the option shown in the Fig.2, but there is
one located in the output folder /home/embedded/Desktop/artico3/demos/mdc_monitors, for tuning
the option depending on your own needs.
1. Open a terminal in the output folder (/home/embedded/Desktop/artico3/demos/mdc_monitors)
in which next commands will be launched.
2. Set up the ARTICo3 enviroment by running:
$ source /home/embedded/Desktop/artico3/tools/setting.sh

3. Generate the RTL system:
$ a3dk

$ export_hw

4. Build the system (we are going to SKIP THIS STEP DURING THE TUTORIAL):
$ build_hw

The bitstream will be created in the folder .../mdc_output/build.hw/bin/. At this point, the bit-
streams should be moved upon the target device OS: ARTICo3 runtime functions will be in charge of
managing the FPGA reconfiguration. All the necessary steps are detailed on the ARTICo3 website3.
Optional:

3https://des-cei.github.io/tools/artico3/tutorials/setup#execute-on-target-platform

https://des-cei.github.io/tools/artico3/tutorials/setup#execute-on-target-platform


3

Figure 1: Compilation settings as in the MDC GUI

In order to connect the PYNQ board to your laptop, two options are available for the tutorial:
1. Using a serial connection using the Port USB1 with a Boud Rate of 115200.4

2. Using the Ethernet port of the PYNQ board connected to your Local Area Network (LAN)5 (or
directly to your laptop with a cable). The Pynq board can be set up with a static IP:
$ ifconfig eth0 192.168.0.xxx

4Teraterm and Putty are two options.
5https://www.wikihow.com/Create-a-Local-Area-Network-(LAN)

https://www.wikihow.com/Create-a-Local-Area-Network-(LAN)


4

Figure 2: Configuration File Options

To have access to the PYNQ OS command line, please use the ssh protocol:
$ ssh linaro@192.168.0.xxx

If you want to have full access to the PYNQ Filesystem, the best option is to use the Ubuntu’s File
Manager and the sftp protocol as shown in Figure 3.

Figure 3: Ubuntu’s File Manager to navigate the Pynq Filesystem

2 Hardware/Software Code-Generation Setup for Design Space
Exploration

- inputs: bitstreams
- outputs: code ready to be compiled and executed

2.1 Parameterized and Interfaced Synchronous DataFlow (PiSDF)

The algorithm of the application is one of the main inputs of the method and needs to be specified.
Besides, being the algorithm description compliant with a Dataflow Model of Computation (MoC), the
method exploits its intrinsic expressiveness of parallelism. For this purpose a PiSDF MoC is utilized: a
graph that connects Actors and Parameters through FIFO and Parameter dependency link.

1. Open PREESM:
Within the folder:
> /home/embedded/Desktop/preesm-3.17.0.201909161224-linux.gtk.x86_64/

open PREESM by double-clicking on
> eclipse



5

2. Import the template project:
The project created for this tutorial is located within the folder
> /home/embedded/Desktop/preesm_project/tutorial

In the > Project Explorer panel, click on the > Import projects.

Then, in the appearing wizard window, select:
> General > Existing Project into Workspace > Next

Select root directory:
> /home/embedded/Desktop/preesm_project/tutorial/tutorialSummerSchoolFixedTile

and press OK and Finish:

Figure 4: Select Project

Within the folder Algo, the algorithm is described by making use of the PiSDF. Within the folder
Archi, the hardware architecture is described by making use of the S-LAM. Other information can
be found in the PREESM web page6.

3. Open the PiSDF: Within the folder > Algo, double click on the file .diagram file: the PiSDF of
the image processing algorithm will be dispayed (Fig. 5).

2.2 S-LAM

The specific device to be used to test the application needs to be described and serves as an input for
the mapping and scheduling of the application onto the architecture. Because of this, the SLAM was
used as an abstract platform model.

1. Open the S-LAM: Within the folder > Archi, double click on the file ARTICo3_4.slam file: the
PiSDF of the image processing algorithm will be displayed (Fig. 6).

In the case reported in the above figure, the blue boxes are the Processing Elements (PEs) and
the pink boxes are the memories of our architecture. The board used for the tutorial is a Pynq
equipped with a Zynq device. The device is composed by two ARM CORTEX-A9 and a Xilinx
FPGA.

6https://preesm.github.io/

https://preesm.github.io/


6

Figure 5: PiSDF of the image processing algorithm.

Figure 6: Architecture: one CPU and four ARTICo3 slots.

In the SLAM, one CPU core is modelled (the Core0) and four ARTICo3 slots (from Slot1 to Slot4).

2. The SLAM can be modified by using the palette on the right side of the screen.

PREESM gives the possibility to specify the nature of the PE within the SLAM in order to describe
heterogeneous system. In this case, by choosing a PE and selecting the tab > Properties > Basic on
the bottom of the screen (Fig. 7):

Within the > definition, it is possible to set the PE to:

• ARM: it generates code ready to be compiled and executed upon a CPU.



7

Figure 7: Properties tab on the bottom of the screen.

• Hardware: it generates code ready to compiled. It offloads some "processing" into the FPGA side
(by making use of Hardware Accelerators).

In the tutorial, a SLAM is proposed with one CPU and four ARTICo3 slots (Fig. 6).

2.3 Scenario

The Scenario is the last input for the mapping and scheduling within PREESM, where additional infor-
mation is provided: optional affinity for actors forcing their execution on specific processing elements,
data size of the FIFOs tokens, timings of the actors executions, etc. A detailed explanation of all the
feature available in the Scenario can be found online7.
Let’s open the scenario: in the Project Explorer tab, double click on
Scenario > pynq4slot.scenario.
as shown in Figure 8.
Let’s now set up the input files for the PiSDF and the SLAM by clicking on Browse and by choosing:
- PiSDF : FixedTileSize.pi
- S-LAM : ARTICo3_4.slam

Figure 8: Scenario overview.

7https://preesm.github.io/tutos/

https://preesm.github.io/tutos/


8

Some details of the tab > PAPIFY are going to be analyzed in the last part of the tutorial. Let’s focus
now the attention on the tab > Constraints as highlight in Fig. 9:

Figure 9: Scenario in PREESM.

In this tab, we can assign a specific actor (or a set of actors) execution to a specific PE (or a set of
specific PEs). Keep in mind that you can execute on the FPGA only actor which behaviour has been
previously synthesized using Vivado. If you assign any other actor to the FPGA side, the code generation
will end with no error but, during the execution, the software will not find the right bitstream to be
written in the Configuration Memory.
Having designed only the hardware accelerator for the Filter actor, let’s set the Constraints as follow:
- Core0: enable all actors execution
- Slot1: select just Filter
- Slot2: select just Filter
- Slot3: select just Filter
- Slot4: select just Filter

2.4 Design Space Exploration

It is possible to change the parameter values on the PiSDF, the SLAM and/or the Scenario and execute
the workflow as many times you want. After the execution of the generated code on the target device,
the consequence of the changing can be observed and collected, thus allowing a Design Space Exploration
(DSE).



9

3 Monitoring, Code Generation and Profiling

Monitoring Configuration
The configuration is done in PAPIFY tab, from scenario file. The resulting configuration is shown in
Figure 10

1. Import monitoring info
- Click on Browse button
- Select PAPI_info.xml available in tutorialSummerSchoolFixedTile/Code

2. In PAPIFY PE configuration, associate PAPI components with PE types
- perf_event↔x86
- artico3↔Hardware

3. In PAPIFY actor configuration, associate PAPI events with actors
- Select timing and PAPI_L1_DCM event for every actor
- Select artico3:::MDC_CLOCK_CYCLE event for actor Filter

Figure 10: PAPIFY configuration.

Code Generation
- Right click on Codegen.workflow available in Workflows folder
- Click on Preesm > Run Workflow

- Select pynq4slots.scenario from tutorialSummerSchoolFixedTile/Scenarios folder

Compile and Execute on Pynq Board
- Copy on the Pynq board the complete tutorialSummerSchoolFixedTile/generated/Code folder
- Compilation and execution set up: source compile_and_setup.sh

- Go to execution directory: cd /home/linaro/mdc_summer_school/bin



10

- Execute the application: ./summerSchoolFixedTile

Profiling analysis
- On your laptop, after installing Papify-Viewer tool8, open its containing folder:
cd /home/embedded/Desktop/papify/PapifyViewer

- Launch Papify-Viewer tool: python PapifyViewerDynamic.py

- In Choose Folder option, select the papify-output folder (it can be found in the same folder from where
the application is executed. In our case cd /home/linaro/mdc_summer_school/bin/papify-ouput)
- Select Cores fixed option to visualize the application timing execution. The result should be equivalent
to the one shown in Figure 11.

Figure 11: PAPIFY configuration.

8How to install Papify-Viewer: https://gitlab.citsem.upm.es/papify/papify/tree/master/PapifyViewer

https://gitlab.citsem.upm.es/papify/papify/tree/master/PapifyViewer

	Hardware Accelerators Creation
	Hardware/Software Code-Generation Setup for Design Space Exploration
	PiSDF
	S-LAM
	Scenario
	Design Space Exploration

	Monitoring, Code Generation and Profiling

