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Heterogeneous Systems-on-Chip

iPhone 6 features the A8 SoC
• 8.47 x 10.50 mm (20nm by TSMC)

• 13% smaller than A7 (28nm)
• dual-core ARM CPU at 1.40 GHz

• 25% more CPU performance
• four-cluster PowerVR GPU

• 50% more graphics performance
• 2 billions of transistors 

• twice the number of transistors compared 
to the A7

• almost 30 out-of-core accelerators
• 50% of the power compared to A7 (~20 

out-of-core accelerators) 

Out-of-Core
Accelerators
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Dark Silicon is the Next Big Issue

“MOORE’S LAW: The number of transistors on an affordable CPU 
would double every two years” (G.E. Moore, 1976)

20+ years of CPU improvements 
(pipeline stages, branch predictions, 

multicore, etc.), but we hit the 
utilization wall! 

“With each successive generation, 
the percentage of a chip that can 

actively switch drops exponentially 
due to power constraints”

dark silicon is pushing towards
heterogeneous computing



ESP: Embedded Scalable Platform

Embedded platform with:
• Leon3 processor
• Possibility to plug-and-play a variety of 

accelerators
• On-chip communication with DRAM controllers

• Latency-insensitive NoC

FPGA prototype for full-system 
evaluation
• 100 MHz
• 1 GB of DDR3 memory with two 

physically-separated address spaces

NoC:	Efficient	data	
movements

Running	a	complete	
Linux	OS

Generated	and	
optimized	with	

HLS

Mantovani et al.
ASPDAC 2016



Abstracting Accelerator-based Systems

Specialized microarchitecture for both computation and storage
• For delivering energy-efficient high performance

SoC Hardware Accelerator

DMA

Accelerator Logic

PLM

bank

bank

bank

bank

Conf. Regs

system interconnect

HW
ACC

DRAM
Ctrl

CPU DRAM

Multiple accelerators 
on the same system 
interconnect (bus or 

network-on-chip)

CPU to prepare the 
data in DRAM and 

control the 
accelerator (e.g., 

device driver)



PLM and DRAM: A Huge Gap

Bench. DRAM Data Size
(MB)

PLM Data Structures
Bench. DRAM Data Size

(MB)
PLM Data Structures

(#) (MB) (#) (MB)

Sort 4.000 6 0.024 FFT1D 0.250 10 0.040

FFT2D 64.000 4 0.128 Debayer 16.000 4 0.096

Lucas Kan. 32.000 11 0.020 Change Det. 320.000 10 0.062

Interp. 1 32.040 6 0.048 Interp. 2 64.010 7 0.640

Backproj. 256.040 8 0.099 Diparity 15.820 11 0.146

PCA 20.190 3 0.117 SRR 4.760 21 0.076

Each accelerator is ~1mm2

• Comparable to Apple A8 
accelerators

PLM occupies 75% to 98%
of accelerator area
• Still a lot of data transfers0%
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Why Out-of-core Accelerators?

Loosely-coupled accelerators are more efficient in case of large data 
sets to elaborate
• Part of the data can be locally stored in Private Local Memories for fast access

DMA	
Ctrl	
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Computa0on	1	

Output	

Computa0on	n	ke
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el
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PLM	ports	

ping-pong	buffer	
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out	

Accelerator	Logic	

Cota et al.
DAC 2015



Out-of-core Accelerators

Accelerator logic with specialized micro-
architecture to exploit hardware parallelism

Input

Computation	
1

Output

Computation	
n

Accelerator Logic



Out-of-core Accelerators

Private Local Memory with multiple 
ports to offer more hardware parallelism

Private Local	Memory

ping-pong	buffer

read

write
circular	buffer

1
2
3

45
6

…

1 2

in

out

PLM ports



Out-of-core Accelerators

Communication processes and DMA 
controller to exchange data with the rest of the 

system

DMA
Ctrl

Input

Output



From Programmer’s View to RTL

C language allows us to easily specify, design, and optimize
accelerators for irregular applications
• pointer-based operations (arithmetic, dynamic resolutions, accesses to external 

memory, …)

void Gsm_LPC_Analysis(word* so, word* LARc)
{  

longword L_ACF[9];    
Autocorrelation(so, L_ACF);
Reflect_coeff(L_ACF, LARc);
To_Log_Area_Rat(LARc); 
Quant_and_coding(LARc);

} GSM_LPC_Analysis

C
on

tro
lle

r

Conf. registers

Datapath SP
M
(L
_A
C
FAutocorrelation

C
on

tro
lle

r

D
at

ap
at

h

Reflect_coeff

C
on

tro
lle

r

D
at

ap
at

h

To_Log_Area_Rat

C
on

tro
lle

r

D
at

ap
at

h

Quant_and_coding

C
on

tro
lle

r

D
at

ap
at

h

Mem. Interfaceso L_ARc



From Programmer’s View to RTL

SystemC language allows us to easily specify, design, and optimize
data-intensive accelerators
• DMA transfers to exchange data blocks with main memory

SC_MODULE(debayer) {
sc_in<bool> clk, rst; 

private:
int A0[6][2048]; 
int B0[2048], B1[2048];

public:
SC_CTOR(debayer) {
SC_CTHREAD(Load, clk.pos());   
reset_signal_is(rst, false); 
SC_CTHREAD(Compute, clk.pos()); 
reset_signal_is(rst, false);    
SC_CTHREAD(Store, clk.pos()); 
reset_signal_is(rst, false); 

//...

PLM Unit (A0)
[12288x32]

PLM Unit (B0)
[2048x32]

PLM Unit (B1)
[2048x32]

Private Local 
MemoryAccelerator Logic

Load

Compute

Store

Configuration Registers

DM
A 
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Ctrl A0

Ctrl B0

Ctrl B1

sync

sync



Good News and Bad News

The Good News:
• Abundant data parallelism enables high performance

• Hardware parallelism
• Specialized micro-architecture enables energy efficiency

• Possibility to turn off the component when inactive
• High-Level Synthesis (HLS) tools come in handy

The Bad News:
• Lack of unified design and programming models 

• Limited reusability 
• Communication overheads

• Especially in case of many accelerators running together and competing for the memory
• Hardware parallelism requires a specialized local memory

• Many data to process in the same clock cycle



HLS-based Design Flow

High-Level Synthesis (HLS) tools are pretty good to design the 
accelerator logic
• Description in a high-level language (e.g., C/C++/SystemC)
• Several compiler-based, technology-aware optimizations

HLL
Spec

Tech
Library

Constraints

HLS
Scheduling

Resource Binding

Controller Synthesis

Accelerator
(HDL)

Testbench
(HLL/HDL)

Compiler Frontend
Wrapping

Analysis

Transformations

Nane et al.
TCAD 2016



Generating Optimized Heterogeneous SoCs

High-Level Synthesis (HLS) to create 
the accelerator logic
• Definition of memory-related parameters 

(e.g. number of process interfaces)

System-level sharing of resources 
with Multi-Dataflow Composer (MDC)

Generation of specialized PLMs
• Technology-related optimizations 
• Possibility of system-level optimizations 

across accelerators
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Francesca	Palumbo,	University	of	Sassari
Reconfigurable	Platform	Composer	Tool	Project

• DATAFLOWMODEL OF COMPUTATION
– Modularity and parallelism® EASIER INTEGRATION AND

FAVOURED RE-USABILITY
• COARSE-GRAINED RECONFIGURABILITY

– Flexibility and resource sharing®MULTI-APPLICATION
PORTABLE DEVICES

Target & Technological Challenges



• DATAFLOWMODEL OF COMPUTATION
– Modularity and parallelism® EASIER INTEGRATION AND

FAVOURED RE-USABILITY
• COARSE-GRAINED RECONFIGURABILITY

– Flexibility and resource sharing®MULTI-APPLICATION
PORTABLE DEVICES

Reconfigurable	Platform	Composer	Tool	Project
Automated	 are	fundamental	to	guarantee	

.	Dealing	with	
systems,	in	particular	for	 ,	state	of	

the	art	still	lacks	in	providing		a	broadly	accepted	solution.

Target & Technological Challenges
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MDC	front-end
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MDC Frontend: Datapath Merging



CGR	substrate
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composition

Orcc font-end

.cal

MDC	front-end
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TURNUS causation	trace	
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worst	case	
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XRONOS	high	
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What	are	the	topological	characteristics	impacting	on	the	CGR	substrate?
1.	Number	of	merged	dataflow specifications
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Structural Profiler



What	are	the	topological	characteristics	impacting	on	the	CGR	substrate?
1.	Number	of	merged	dataflow specifications
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Automated	Pareto	Analysis

2

MSs=	Merged	dataflow	Specifications	(example	with	N=7)

Structural Profiler



Automated	Pareto	Analysis

AREA/POWER	OPTIMAL

FREQ.	OPTIMAL

2

MSs=	Merged	dataflow	Specifications	(example	with	N=7)

Structural Profiler
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low	power	(clock	gated)	
CGR	substrate
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Co-Processor	Characterization
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Co-Processor	Characterization
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Co-Processor	Deployment
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How to Design Private Local Memories?

Dedicated (multi-port) local memories for storing part of the data
• memory design transparent to accelerator logic
• alternative implementations with block/cyclic partitioning
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RTL Architecture for Irregular Applications

Internal memory bus where the pointer is dynamically resolved
• Daisy-chain architecture with possibility of accessing the external memory

Heterogeneous SoC
Hardware Module
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Multi-port Memories are not for Free

Distributed registers (e.g. flip-flops)
• Many ports at the cost of more area
• Good for small to medium data structures

Memory Intellectual Property (IP) blocks
• Area-efficient macro blocks provided by the 

technology vendors 
• SRAMs for CMOS and BRAMs for FPGA

• Good for medium to large arrays
• Limited number of ports (usually no more than two!)

1024x32 array in an industrial 
CMOS 32nm technology

Distributed	registers
145,707.5 um2

Memory	IP block
35,106.6 um2

(4x	area	reduction)

Multi-bank 
architectures based on 

memory IPs



Mnemosyne

Prototype CAD tool that implements a complete system-level 
methodology for PLM customization

Data	structures,	access	
patterns,	…

HLS	optimizations,	number	of	
memory	interfaces,	…

Memory	IPs,	multi-bank	
architectures,	…

SystemC

SystemC +	RTL

RTL

Designer

HLS	tool Optimizations	to	reduce	memory	cost
Flexiblememory controller	to	coordinate	

memory	accesses

Data	Access	
Requirements

Memory
Library

Mnemosyn
e

PLM	architecture	
(RTL)

Automatic	Generation

Data	
Structures

Mnemosyne

Performance optimization: HLS defines how the accelerator logic accesses the 
data structures (e.g. number of parallel accesses)

Cost optimization: Mnemosyne defines the best memory architecture able to 
guarantee the desired performance (e.g. number of banks, data allocation)



Reuse What is not Used

Generally we can use one PLM unit (eventually composed of many 
banks) for each data structure

“Two data structures are compatible if they can be 
allocated to the same PLM unit (memory IPs)”

A common case: accelerators never executed at the same time
• Possible only at the system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse the same memory IPs 
for several data structures



Optimization only at the System-Level

Accelerator(s) memory subsystem is defined during SoC integration
• Possibility for more optimizations

Logic
PLM

IP DESIGN

Logic
PLM

IP DESIGN

SOC INTEGRATION

Accelerator 
Design
(SystemC)

Algorithm 
Design (C/C++)

Accelerator 
Design
(SystemC)

Algorithm 
Design (C/C++)

Accelerator 
Design
(SystemC)

Algorithm 
Design (C/C++)

Logic
IP DESIGN

Accelerator 
Design
(SystemC)

Algorithm 
Design (C/C++)

SOC INTEGRATION

Memory Subsystem Design

Logic
IP DESIGN

Mem 
Reqs

Mem 
Reqs

Traditional Approach Our Approach



Optimization of Multiple Accelerators

HLS and DSE 

Accelerator Design1 
(SystemC) 

Accelerator Logic1 
(Verilog) 

Memory 
Requirements1 HLS and DSE 

Accelerator Designk 
(SystemC) 

Accelerator Logick 
(Verilog) 

Memory 
Requirementsk 

       

Compatibility 
Information Memory 

IPs 

Technology-unaware 
Transformations1 

Local Tech-aware 
Transformations1 

Memory 
Subsystem 
(Verilog) 

Global Technology-aware Transformations 

1 1 

2 

3 

4 

MNEMOSYNE Technology-unaware 
Transformationsk 

2 

Local Tech-aware 
Transformationsk 

3 

Generation of RTL Architecture 
5 

…	

Pilato et al.
TCAD 2017



Memory Compatibility Graph

Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data 

footprint (after data allocation)
• Each edge represents compatibility between the two data structures 

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the 
data structures are compatible and 
can use the same memory IPs

b) Memory-interface compatibility: 
the ports are never accessed at 
the same time and the data 
structures can stay in the same 
memory IP



How to Determine the Memory Subsystem

Memory	Cost	Minimization

To	determine	how	to	partition	the	MCG	such	that	the	total	memory	cost	is	minimized

Clique	Characterization

To	determine	the	memory	architecture	of	all	cliques	and	their	memory	cost

Clique	Enumeration

To	define	the	list	of	admissible	cliques	in	the	Memory	Compatibility	Graph	(MCG)



PLM Controller Generation

A lightweight PLM controller is created for each clique based on the 
bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom	logic with	negligible	overhead,	especially	when	
the	number	of	banks	and	their	size	is	a	power	of	two

0x0 0x1

0x0

0x1

0x0

0x1

ATU ATU ATU ATU 

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

0x00 
0x01 
0x02 
0x03 

…

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

ATU ATU ATU ATU 

C
E
	

W
E
	

A
	

D
	

C
E
	

A
	

Q
	

0x00 
0x01 
0x02 
0x03 

…

0x00 
0x01 
0x02 
0x03 

…

0x00 
0x01 
0x02 
0x03 

…

…	

1 0010 1

100101



Impact of Optimizations
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Industrial 32nm CMOS 
technology
• Memory library with 18 

SRAMs

Xilinx Virtex-7 FPGA
• Memory library with 6 

BRAM configurations



Multiple Accelerators in Time Multiplexing

We created four realistic scenarios:
• Required: Sort, FFT1D, FFT2D
• WAMI: Debayer, Lucas Kanade, Change Detection
• SAR: Interpolation 1, Interpolation 2, Backprojection
• Cortex: Disparity, SRR, PCA, RBM

Bench.
Data	Structures CMOS FPGA

(#) (KB) #Ctrl. (KB) Diff (%) #Ctrl. (KB) Diff	(%)

Required 13 192.00 4 140.00 -32.05 4 192.00 -29.17

WAMI 25 178.21 8 131.00 -43.93 8 212.00 -57.55

SAR 21 211.10 8 100.00 -55.07 8 216.00 -53.07

Cortex 54 404.23 32 653.50 -36.42 32 690.00 -46.67



Accelerators Executing Concurrently

Balancing communication and computation is crucial for 
performance optimization
• Optimizing microarchitecture reduces the computation latency

• Combination of HLS transformations and PLM customization

• Input and output phases interact with the rest of the system 
• Backpressure due to congestion may increase the latency

out[1]	=	
kernel
(in[1])

out[2]	=	
kernel
(in[2])

out[3]	=	
kernel
(in[3])

…

1 2 3

1 2 …

clock

Input

Computation

Output

4
out[1]	=	
kernel
(in[1])

out[2]	=	
kernel
(in[2])

out[3]	=	
kernel
(in[3])

…

1 2 3

1 2 …

clock

Input

Computation

Output

4

Reduce the congestion or exploit the congestion 
to optimize the execution at the system level



Optimizing the System Execution

Reduce congestion: Smart data allocation on multiple controllers
• Partition the data set across multiple memory spaces (1-4 MB pages) with a 

custom Linux module
• Configure hardware TLB with virtual-to-physical addresses
• DMA controller generates transactions to the proper memory controller

Exploit congestion: dynamic power management with DVFS
• Vary the execution mode of the accelerators (voltage/frequency) based on the 

workload
• Only requires local probes to determine when an accelerator is stalling after a 

data request

Mantovani et al.
CASES 2016

Mantovani et al.
DAC 2016



Accelerators are Becoming More and More 
Complex
Complex accelerators with large PLMs are becoming an important 
source of power consumption
• Leakage is becoming more and more critical (45nm and below)

• almost 70% of total power consumption
• SRAM leakage contributes for more than 50% to the total leakage
• can be reduced by more than 70% by reducing supply voltage
• Dual-rail SRAMs not sufficiently exploited

Fine-grained power management is gaining a lot of attention
• Number of accelerators is usually larger than the number of memory controllers 

(communication bottleneck)

During congestion we can reduce the 
power consumption of the accelerators



How to Dynamically Control the Banks?

• PLM units are not entirely used in all configurations (scenarios)
• Scenario-based optimization: partitioning of the banks to maximize the 

banks that are power gated

• Workload-based optimization: dynamic control of the logic/cell power gating
based on the execution phases (e.g., during congestion)

A0 A1

A0 → B0 A1 → B1 A0 → B0

A0 A1

B0 B1

Load

Compute

Store

B0

B1

3 1

1

1 1

1

2

(b)

(c)

B0-1

B0-1
B0-2

S1

S2

B0-1

B0-1
B0-2

SRAM bank can be
power gated when 

unused

(a)
2,048x32 SRAMs 1,024x32 SRAMs

SRAM banks are 
always active even 
when partially used

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

B0-1
B0-2

S1

S2

(d)

System congestion can delay the data transfers

2

3 22 1 2 3

Unused banks are 
always power gated



DarkMem Architecture

• Each PLM unit is extended with power-control logic
• SMC identifies the current execution scenario 
• OMC manages the SRAM operating modes based on signals from the 

accelerator logic

DarkMem Unit (A0)

DarkMem Unit (B0)

DarkMem Unit (B1)

Private Local MemoryAccelerator Logic

Load

Compute

Store

IVR

IVR

IVR

Configuration Registers

DM
A 

C
on

tro
lle

r

Ctrl A0

Ctrl B0

Ctrl B1

Ctrl (B0) DarkMem Unit (B0)

SMCOMC

SRAM (b0)  

SRAM (b1)

Configuration Registers

0PGL

0PGM

0PGL

0PGM

OR

OR

OR

OR

Power Ctrl
B0

Data Ctrl
B0

IVR

sync

• Fine-grained control of each SRAM 
power pin (PGL and PGM)

Pilato and Carloni
ASPDAC 2018



Determining the Bank Configuration

• ILP formulation to determine the number and type of banks for each 
PLM unit, based on:

• Data to be stored (bitwidth and number of words) in each scenario
• List of scenarios and frequency of execution
• List of available memory IPs and corresponding active/gated static power

𝑃𝐿𝑀$%&%'( = 	+ 𝑃𝐿𝑀$%&%'(
$ , 𝑓𝑟𝑒𝑞 𝑠

�

$∈4

• Used to configure the SMC modules to generate the proper masks



Experimental Results

• We improved the design of eight accelerators
• SystemC specification extended with DarkMem API
• PLM generator extended with generation of the DarkMem units

• Industrial 32nm CMOS technology at 1GHz
• Cadence C-to-Silicon for HLS

• Memory library with 18 dual-rail SRAMs
• Customized to have different power-gating characteristics



Impact of Single Optimizations

• Reference designs: with no optimizations

• Performance overhead is minimal (less than 1%)

Scenario-based STD Library LP Library ULP Library

-45%
-30% Reference
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Combined Results

• SRAM static power can be reduced up to 60%
• In average, the total power is reduced by around 18%

-59%

Reference
-18%

SRAM static power Total power
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Fine-grained DVFS in Heterogeneous SoCs

Modern technology for integrated voltage regulators (IVRs) enables 
fine-grained DVFS
• Fast response (sub-µs) to dynamic supply 

voltage scaling
• Possibility to create NoC-based SoCs

where each tile has its own voltage 
domain

• 3D-Stacked Switched-Inductor
Voltage Regulators

How many voltage domains?
How to aggregate accelerators?
How to change operating point? Tien et al.

VLSI 2015



Enabling Pre-Silicon Evaluation of 
Fine-Grained DVFS
Design time modeling
• Accurate power modeling of accelerators
• Actual frequency scaling implementation

• Up to 12 independent clock regions dedicated
to accelerators on each FPGA

• Configurable transient (~10s cycles)
• Configurable hardware policies and 

software supervisor

Runtime monitoring
• Distributed system and accelerator 

customized probes

I/O

CPU

ACC

ACC

ACC

ACC

ACC

DDR

ACC

DVFS	probe
Acc.	probe

D0

D1

D3

D2



Heterogeneous SoC with Fine-grained DVFS
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Up to 85% energy savings with a 
performance penalty of less than 10%

10 accelerators, 2 DDR controllers, 1 
processor and 1 I/O tile for monitoring



Conclusions

Specialized accelerators are key elements in SoC design
• High performance and energy efficiency
• (Quite) mature HLS tools can support the generation of complex systems

PLM customization is crucial to achieve high performance
• Enables more hardware parallelism
• High static/dynamic power consumption to be addressed with specific solutions

With Mnemosyne and fine-grained power management:
• We create complex heterogeneous SoCs with optimized accelerator memory 

subsystems (up to 55% of area savings, and 60% of power saving)
• We reduce energy consumption (>80%) with almost no performance overhead 

(<10%)



What’s Next?

Latency-insensitive memories can relax the conflict-free 
requirements and enable additional memory optimizations
• Memory subsystem can be designed in parallel to accelerators 

• physically-aware optimizations
• trading-off performance overhead and area savings

Analysis of emerging memory technologies
• How to design and program systems with a combination of different memory

technologies?
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